

Working Effectively with
Unit Tests

Jay Fields

This book is for sale at http://leanpub.com/wewut

This version was published on 2015-01-26

This is a Leanpub book. Leanpub empowers authors and
publishers with the Lean Publishing process. Lean
Publishing is the act of publishing an in-progress ebook
using lightweight tools and many iterations to get reader
feedback, pivot until you have the right book and build
traction once you do.

©2014 - 2015 Jay Fields

http://leanpub.com/wewut
http://leanpub.com
http://leanpub.com/manifesto
http://leanpub.com/manifesto

Tweet This Book!
Please help Jay Fields by spreading the word about this book
on Twitter!

The suggested hashtag for this book is #wewut.

Find out what other people are saying about the book by
clicking on this link to search for this hashtag on Twitter:

https://twitter.com/search?q=#wewut

http://twitter.com
https://twitter.com/search?q=%23wewut
https://twitter.com/search?q=%23wewut

For Dana, the love of my life.

Contents

Foreword . i

Preface . iii

Acknowledgments . vii

Unit Testing, a First Example 1
Thoughts on our Tests 9
The Domain Code 12
Moving Towards Readability 21
Replace Loop with Individual Tests 24
Expect Literals . 31
Inline Setup . 36
Replace ObjectMother with DataBuilder 40
Comparing the Results 49
Final Thoughts on our Tests 60

Motivators . 62

More… . 75

Foreword
It’s taken quite a while but we finally have consensus around
the idea that unit testing is a necessity for most of today’s
projects. Occasionally, I see a voice in the wilderness chal-
lenge the idea - but just as quickly people who’ve been doing
unit testing reflect back on their experience and notice the
benefits that they’ve received. The idea of going without unit
tests on a large project is just unthinkable for many people.

To me, this is success of the best kind - people are able to get
more work done with less stress and fewer headaches. But
that doesn’t mean that it’s all easy. Even though unit testing
has been a strongly recommended practice since at least the
early 2000s, people still struggle. They struggle because it is
easy to get lost in the design decisions that you have to make
when you are writing tests.

Tests are just as important as production code, but they
are different. Through trial and error we are learning better
practices but much of that knowledge is not yet widespread.

Foreword ii

This is why I am very excited by Jay Fields’ book. I’ve known
Jay for close to a decade and over that time I’ve seen him
approach problems in software with conscientiousness and
deep curiosity - trying things out, discussing them and not
being satisfied with answers that don’t quite ring true. The
book you’re about to read is a culmination of that inquiry.
Reading it, you’ll learn a lot about unit testing. But, more than
that, if you read between the lines you’ll learn a lot about how
to see and think about software.

– Michael Feathers, Director, R7K Research & Conveyance

Preface
Over a dozen years ago I read Refactoring¹ for the first time; it
immediately became my bible. While Refactoring isn’t about
testing, it explicitly states: if youwant to refactor, the essential
precondition is having solid tests. At that time, if Refactoring
deemed it necessary, I unquestionably complied. That was the
beginning of my quest to create productive unit tests.

Throughout the 12+ years that followed my first reading of
Refactoring I made many mistakes, learned countless lessons,
and developed a set of guidelines that I believe make unit
testing a productive use of programmer time. This book
provides a single place to examine those mistakes, share the
lessons learned, and provide direction in a way that I’ve found
to be the most effective.

Why Test?

The answer was easy for me: Refactoring told me to. Un-
fortunately, doing something strictly because someone or
something told you to is possibly the worst approach you
could take. The more time I’ve invested in testing, the more
I’ve foundmyself returning to the question:Why am I writing
this test?

¹http://martinfowler.com/books/refactoring.html

http://martinfowler.com/books/refactoring.html
http://martinfowler.com/books/refactoring.html

Preface iv

There are many motivators for creating a test or several tests:

• validate the system
– immediate feedback that things work as expected
– prevent future regressions

• increase code-coverage
• enable refactoring
• document the behavior of the system
• your manager told you to
• Test Driven Development

– improved design
– breaking a problem up into smaller pieces
– defining the “simplest thing that could possibly
work”

• customer acceptance
• ping pong pair-programming

Some of the above motivators are healthy in the right context,
others are indicators of larger problems. Before writing any
test, I would recommend deciding which of the above are
motivating your testing. If you first understand why you’re
writing a test, you’ll have a much better chance of writing a
test that is maintainable and will make you more productive
in the long run.

Once you start looking at tests while considering the motiva-
tor, you may find you have tests that aren’t actually making
you more productive. For example, you may have a test that
increases code-coverage, but satisfies no other motivator. If
your team requires 100% code-coverage, then the test provides
value. However, if your team has abandoned the (in my
opinion harmful) goal of 100% code-coverage, then you’re in
a position to perform my favorite refactoring: delete.

Preface v

Who Should Read This Book

This book is aimed at a professional programmer, someone
whowrites software for a living. The examples and discussion
include a lot of code to read and to understand.

Although this book is focused on testing, testable code can
have a large impact on the design of a system. It is vital for
senior designers and architects to understand the principles
recommended and to use them in their projects. The prin-
ciples within this book are best introduced to a team by a
respected and experienced developer. Such a developer can
best understand the principles and adapt them to their specific
context. In addition, familiarity with this book’s content will
allow experienced developers to provide it as a reference for
the less experienced members of their team.

Despite my opinion on who should introduce these concepts,
I’ve attempted to write this book for both people experienced
with and those brand-new to unit testing. Ideally, a respected
programmer will look to implement the ideas within this
book, and begin by passing this book on to those on the team
that would likely share interest in this approach. If you’re
already writing tests I believe this book will provide concepts
and suggestions that will prove useful for years to come. If
you aren’t already writing tests you’ll likely want to pick up
an intro to unit testing book as well. The concepts in this book
should be understandable to developers of all levels; however,
we will not cover concepts such as framework selection,
framework configuration, or writing your first test.

Preface vi

Building on the Foundations Laid by
Others

While this book does contain an Acknowledgments section, it
wouldn’t be practical to thank everyone that has contributed
to creating the practices that this book details. I can say with
full confidence that I wouldn’t be in the position to write this
book without at least the following groups:

• creators and maintainers of both NUnit and JUnit
• creators and maintainers of NMock, (James Mead’s)
Mocha, Mockito, JMock, and RSpec

• each teammember from each ofmy projects at Thought-
Works & DRW Trading

• every conference speaker or attendee who’s provided
feedback on my (sometimes radical) ideas

• every personwho left a comment on blog.jayfields.com²

Thank you all, I deeply appreciate the feedback you’ve given
throughout the years.

²http://blog.jayfields.com

http://blog.jayfields.com
http://blog.jayfields.com

Acknowledgments
After writing Refactoring: Ruby Edition, I swore I’d never
write another book. Book writing is unquestionably a labor
of love, and I wouldn’t be able to do it without the support of
my many friends in the industry.

• Martin Fowler: Thank you for allowing me to reference
and reuse content from Refactoring. It’s still my favorite
technical book of all time.

• Obie Fernandez: Thank you for the nudge to use lean-
pub; it was crucial for making this project happen.

• Michael Feathers: Honestly, I just liked the way Work-
ing Effectively with Unit Tests sounded. I never consid-
ered that anyone would associate this book with a book
as universally loved asWorking Effectively with Legacy
Code. Nonetheless, I’ll do my best to deliver a book
that is worthy of being on the same shelf as Working
Effectively with Legacy Code. Thank you very much for
your blessing.

• Original Reviewers: There’s no question this book is
significantly better due to the feedback I got from those
who originally volunteered to provide feedback. Thank
you Graham Nash, John Hume, Pat Farley, & Steve
McLarnon.

Acknowledgments viii

Additionally, I’ve been happily surprised by the support I’ve
gotten from people who purchased the early edition on lean-
pub and promptly provided feedback. Many thanks - Allan
Clarke, Corey Haines, Derek Reeve, J. B. Rainsberger, Jake
McCrary, Josh Graham, Kent Spillner, Pablo Guardiola &
Steve Vinoski.

I’m sure there are others who I’ve forgotten; I apologize and
offer my thanks.

Unit Testing, a First
Example
I’d like to begin this book with an example, and I believe
Martin’s description of why is as clear as it can be written:

Traditionally technical books start with a gen-
eral introduction that outlines things like history
and broad principles. When someone does that
at a conference, I get slightly sleepy. My mind
starts wandering with a low-priority background
process that polls the speaker until he or she
gives an example. The examples wake me up
because it is with examples that I can see what
is going on. With principles it is too easy to
make generalizations, too hard to figure out how
to apply things. An example helps make things
clear. –Martin Fowler, Refactoring: Ruby Edition

Note: If the following domain looks familiar to you, that’s
because I’ve borrowed it from Refactoring.

Without further ado, I present a test failure.

Unit Testing, a First Example 2

JUnit version 4.11

.E.E..

There were 2 failures:

1) statement(CustomerTest)

org.junit.ComparisonFailure: expected:<...or John

Godfather 4[]9.0

Amount owed is 9...> but was:<...or John

Godfather 4[]9.0

Amount owed is 9...>

2) htmlStatement(CustomerTest)

org.junit.ComparisonFailure: expected:<...</h1>

<p>Godfather 4[]9.0</p>

<p>Amount ow...> but was:<...</h1>

<p>Godfather 4[]9.0</p>

<p>Amount ow...>

FAILURES!!!

Tests run: 4, Failures: 2

The above output is what JUnit will report (sans stacktrace
noise) for the (soon to follow) CustomerTest class.

Unless you work alone and on greenfield projects exclusively,
you’ll often find your first introduction to a test will be when
it fails. If that’s a common case you’ll encounter at work then
it feels like a great way to start the book as well.

Below you’ll find the cause of the failure, the CustomerTest

class.

Unit Testing, a First Example 3

public class CustomerTest {

Customer john, steve, pat, david;

String johnName = "John",

steveName = "Steve",

patName = "Pat",

davidName = "David";

Customer[] customers;

@Before

public void setup() {

david = ObjectMother

.customerWithNoRentals(

davidName);

john = ObjectMother

.customerWithOneNewRelease(

johnName);

pat = ObjectMother

.customerWithOneOfEachRentalType(

patName);

steve = ObjectMother

.customerWithOneNewReleaseAndOneRegular(

steveName);

customers =

new Customer[]

{ david, john, steve, pat};

}

Unit Testing, a First Example 4

@Test

public void getName() {

assertEquals(

davidName, david.getName());

assertEquals(

johnName, john.getName());

assertEquals(

steveName, steve.getName());

assertEquals(

patName, pat.getName());

}

@Test

public void statement() {

for (int i=0; i<customers.length; i++) {

assertEquals(

expStatement(

"Rental record for %s\n" +

"%sAmount owed is %s\n" +

"You earned %s frequent " +

"renter points",

customers[i],

rentalInfo(

"\t", "",

customers[i].getRentals())),

customers[i].statement());

}

}

Unit Testing, a First Example 5

@Test

public void htmlStatement() {

for (int i=0; i<customers.length; i++) {

assertEquals(

expStatement(

"<h1>Rental record for " +

"%s</h1>\n%s" +

"<p>Amount owed is %s" +

"</p>\n<p>You earned %s" +

" frequent renter points</p>",

customers[i],

rentalInfo(

"<p>", "</p>",

customers[i].getRentals())),

customers[i].htmlStatement());

}

}

@Test

(expected=IllegalArgumentException.class)

public void invalidTitle() {

ObjectMother

.customerWithNoRentals("Bob")

.addRental(

new Rental(

new Movie("Crazy, Stupid, Love.",

Movie.Type.UNKNOWN),

4));

}

Unit Testing, a First Example 6

public static String rentalInfo(

String startsWith,

String endsWith,

List<Rental> rentals) {

String result = "";

for (Rental rental : rentals)

result += String.format(

"%s%s\t%s%s\n",

startsWith,

rental.getMovie().getTitle(),

rental.getCharge(),

endsWith);

return result;

}

public static String expStatement(

String formatStr,

Customer customer,

String rentalInfo) {

return String.format(

formatStr,

customer.getName(),

rentalInfo,

customer.getTotalCharge(),

customer.getTotalPoints());

}

}

The CustomerTest class completely covers our Customer do-
main object and has very little duplication; many would
consider this a well written set of tests.

Unit Testing, a First Example 7

As you can see, we’re using an ObjectMother to create our
domain objects. The following code represents the full defini-
tion of our ObjectMother class.

public class ObjectMother {

public static Customer

customerWithOneOfEachRentalType(

String name) {

Customer result =

customerWithOneNewReleaseAndOneRegular(

name);

result.addRental(

new Rental(

new Movie("Lion King", CHILDREN), 3));

return result;

}

public static Customer

customerWithOneNewReleaseAndOneRegular(

String n) {

Customer result =

customerWithOneNewRelease(n);

result.addRental(

new Rental(

new Movie("Scarface", REGULAR), 3));

return result;

}

Unit Testing, a First Example 8

public static Customer

customerWithOneNewRelease(

String name) {

Customer result =

customerWithNoRentals(name);

result.addRental(

new Rental(

new Movie(

"Godfather 4", NEW_RELEASE), 3));

return result;

}

public static Customer

customerWithNoRentals(String name) {

return new Customer(name);

}

}

Unit Testing, a First Example 9

Thoughts on our Tests

Our CustomerTest class is written in a way that follows many
common patterns. It doesn’t take much searching on the Web
to find articles giving examples of “improving” your code by
using a Setup (now @Before in JUnit). ObjectMother lives
under many names, and each name comes with several arti-
cles explaining how it’s either successful or the programmer
didn’t understand how to correctly apply the pattern. Our
tests follow the common advice that above all, code must be
DRY³.

DRY is an acronym for Don’t Repeat Yourself,
and is defined as: Every piece of knowledge must
have a single, unambiguous, authoritative repre-
sentation within a system.

Both of those pieces of advice are contextually valuable. I
can easily think of situations where applying each of those
patterns would be the right choice. However, in the context
of “I would like to quickly understand this test I’ve never seen
before”, those patterns come up short. While working on code
written by a teammate or supporting an inherited system, I
find myself in the latter context far more often than not.

I suspect most people will have skimmed the above tests -
that’s what I would have done. Other people may have taken
the time to try to understand the test and how it relates to the
failure output. If you’re in the second group, I suspect your
thought process might have looked something like this.

³http://en.wikipedia.org/wiki/Don’t_repeat_yourself

http://en.wikipedia.org/wiki/Don't_repeat_yourself
http://en.wikipedia.org/wiki/Don't_repeat_yourself

Unit Testing, a First Example 10

1. find the statement test
2. find the definition of the customers array that we’re

iterating
3. find the assignment to customers

4. digest the assignment of each Customer and their asso-
ciated name

5. look to ObjectMother to determine how the Customer

instances are created
6. digest each of the different Customer instance creation

methods within the ObjectMother
• you now understand the first line of the test

7. digest that the expected value is being created by calling
a method with a String, a Customer, and the result
of calling rentalInfo with 2 String instances and a
customer’s rentals.

8. find the rentalInfomethod and determine what value
it’s returning to expStatement

9. digest that rentalInfo is creating a string by iterating
and formatting Rental data

10. now that you’vementally resolved the args to expStatement,
you find that method and digest it.

• at this point it’s taken 10 steps to simply under-
stand the expected value in your test

11. recognize that the actual value is a call to the domain
object, who’s source I haven’t supplied (yet).

That’s quite a bit you needed to digest, and all of it test code.
Not one character of what you’ve digested will actually run
in production.

Were you actually trying to fix this test, the next logical
question would be: which is incorrect, the expected value

Unit Testing, a First Example 11

or the actual value? Unfortunately, before you could even
begin to tackle that question you’d need to find out what the
expected and actual values actually are. We can see the text
differs around the word “Godfather”, but that only narrows
our list down to the customers john, steve, and pat. It’s
practically impossible to fix this test without writing some
code and/or using the debugger for runtime inspection to help
you identify the issue.

Unit Testing, a First Example 12

The Domain Code

Below youwill find the domain code from Refactoring rewrit-
ten for Java 7. It’s not necessary to digest the domain code
now to complete this chapter. I would recommend skimming
or completely skipping to the end of the section, and coming
back to use this as a reference only if you want to verify your
understanding of the code under test.

Unit Testing, a First Example 13

public class Customer {

private String name;

private List<Rental> rentals =

new ArrayList<Rental>();

public Customer(String name) {

this.name = name;

}

public String getName() {

return name;

}

public List<Rental> getRentals() {

return rentals;

}

public void addRental(Rental rental) {

rentals.add(rental);

}

Unit Testing, a First Example 14

public String statement() {

String result =

"Rental record for " + getName() + "\n";

for (Rental rental : rentals)

result +=

"\t" + rental.getLineItem() + "\n";

result +=

"Amount owed is " + getTotalCharge() +

"\n" + "You earned " +

getTotalPoints() +

" frequent renter points";

return result;

}

public String htmlStatement() {

String result =

"<h1>Rental record for " +

getName() + "</h1>\n";

for (Rental rental : rentals)

result += "<p>" + rental.getLineItem() +

"</p>\n";

result +=

"<p>Amount owed is " +

getTotalCharge() + "</p>\n" +

"<p>You earned " +

getTotalPoints() +

" frequent renter points</p>";

return result;

}

Unit Testing, a First Example 15

public double getTotalCharge() {

double total = 0;

for (Rental rental : rentals)

total += rental.getCharge();

return total;

}

public int getTotalPoints() {

int total = 0;

for (Rental rental : rentals)

total += rental.getPoints();

return total;

}

}

Unit Testing, a First Example 16

public class Rental {

Movie movie;

private int daysRented;

public Rental(Movie movie, int daysRented) {

this.movie = movie;

this.daysRented = daysRented;

}

public Movie getMovie() {

return movie;

}

public int getDaysRented() {

return daysRented;

}

public double getCharge() {

return movie.getCharge(daysRented);

}

public int getPoints() {

return movie.getPoints(daysRented);

}

public String getLineItem() {

return

movie.getTitle() + " " + getCharge();

}

}

Unit Testing, a First Example 17

public class Movie {

public enum Type {

REGULAR, NEW_RELEASE, CHILDREN, UNKNOWN;

}

private String title;

Price price;

public Movie(

String title, Movie.Type priceCode) {

this.title = title;

setPriceCode(priceCode);

}

public String getTitle() {

return title;

}

Unit Testing, a First Example 18

private void setPriceCode(

Movie.Type priceCode) {

switch (priceCode) {

case CHILDREN:

price = new ChildrensPrice();

break;

case NEW_RELEASE:

price = new NewReleasePrice();

break;

case REGULAR:

price = new RegularPrice();

break;

default:

throw new IllegalArgumentException(

"invalid price code");

}

}

public double getCharge(int daysRented) {

return price.getCharge(daysRented);

}

public int getPoints(int daysRented) {

return price.getPoints(daysRented);

}

}

Unit Testing, a First Example 19

public abstract class Price {

abstract double getCharge(int daysRented);

int getPoints(int daysRented) {

return 1;

}

}

public class ChildrensPrice extends Price {

@Override

double getCharge(int daysRented) {

double amount = 1.5;

if (daysRented > 3)

amount += (daysRented - 3) * 1.5;

return amount;

}

}

Unit Testing, a First Example 20

public class RegularPrice extends Price {

@Override

public double getCharge(int daysRented) {

double amount = 2;

if (daysRented > 2)

amount += (daysRented - 2) * 1.5;

return amount;

}

}

public class NewReleasePrice extends Price {

@Override

public double getCharge(int daysRented) {

return daysRented * 3;

}

@Override

int getPoints(int daysRented) {

if (daysRented > 1)

return 2;

return 1;

}

}

Unit Testing, a First Example 21

Moving Towards Readability

When asked “Why do you test?”, industry veteran Josh Gra-
ham gave the following answer:

To create a tiny universe where the software
exists to do one thing and do it well.

The example tests could have been written for many reasons,
let’s assume the motivators that matter to us are: enable
refactoring, immediate feedback, and breaking a problem
up into smaller pieces. The tests fit well for our first two
motivators, but fail to do a good job of breaking a problem
up into smaller pieces. When writing these tests it’s obvious
and clear where “duplication” lies and how “common” pieces
can be pulled into helper methods. Unfortunately, each time
we extract a method we risk complicating our tiny universes.
The right abstractions can reduce complexity; however, it’s
often unclear which abstraction within a test will provide the
most value to the team.

DRY has been applied to the tests as it would be to production
code. At first glance this may seem like a reasonable approach;
however, test code and production code is written, main-
tained, and reviewed in drastically different ways. Production
code collaborates to provide a single running application, and
it’s generally wise to avoid duplicating concepts within that
application. Tests do not, or at least should not collaborate;
it’s universally accepted that inter-test dependency is an anti-
pattern. If we think of tests as tiny, independent universes,
then code that appears in one test should not necessarily be
considered inadvisable duplication if it appears in another test
as well.

Unit Testing, a First Example 22

Still, I recognize that pragmatic removal of duplication can
add to maintainability. The examples that follow will address
issues such asWe’ve grouped david, john, pat, & steve despite
the fact that none of them interact with each other in any
way whatsoever not by duplicating every character, but by
introducing local and global patterns that I find superior.

When I think about the current state of the tests, I remember
my colleague Pat Farley describing some tests as having been
made DRY with a blowtorch.

Rather than viewing our tests as a single interconnected
program, we can shift our focus to viewing each test as
a tiny universe; each test can be an individual procedural
program that has a single responsibility. If we want to keep
our individual procedural programs as tiny universes, we’ll
likely make many decisions differently.

• We won’t test diverse customers at the same time.
• We won’t create diverse customers that have nothing
to do with each other.

• We won’t extract methods for a single string return
value.

• We’ll create data where we need it, not as part of a
special framework method.

In general, I find applying DRY to a subset of tests to be
an anti-pattern. Within a single test, DRY can often apply.
Likewise, globally appropriate DRY application is often a
good choice. However, once you start applying DRY at a
test group level you often increase the complexity of your
individual procedures where a local or global solution would
have been superior.

Unit Testing, a First Example 23

For those that enjoy acronyms, when writing tests you should
prefer DAMP (Descriptive And Maintainable Procedures) to
DRY.

The remainder of the chapter will demonstrate the individual
steps we can take to create tests so small they become trivial
to immediately understand.

Unit Testing, a First Example 24

Replace Loop with Individual
Tests

The first step in moving to more readable tests is breaking the
iteration into individual tests. The following code provides
the same regression protection and immediate feedback as
the original, while also explicitly giving us more information:
passing and failing assertions that may give additional clues
as to where the problem exists.

Unit Testing, a First Example 25

public class CustomerTest {

Customer john, steve, pat, david;

String johnName = "John",

steveName = "Steve",

patName = "Pat",

davidName = "David";

Customer[] customers;

@Before

public void setup() {

david = ObjectMother

.customerWithNoRentals(davidName);

john = ObjectMother

.customerWithOneNewRelease(johnName);

pat = ObjectMother

.customerWithOneOfEachRentalType(

patName);

steve = ObjectMother

.customerWithOneNewReleaseAndOneRegular(

steveName);

customers = new Customer[] {

david, john, steve, pat };

}

Unit Testing, a First Example 26

@Test

public void davidStatement() {

assertEquals(

expStatement(

"Rental record for %s\n%sAmount " +

"owed is %s\nYou earned %s " +

"frequent renter points",

david,

rentalInfo(

"\t", "", david.getRentals())),

david.statement());

}

@Test

public void johnStatement() {

assertEquals(

expStatement(

"Rental record for %s\n%sAmount " +

"owed is %s\nYou earned %s " +

"frequent renter points",

john,

rentalInfo(

"\t", "", john.getRentals())),

john.statement());

}

Unit Testing, a First Example 27

@Test

public void patStatement() {

assertEquals(

expStatement(

"Rental record for %s\n%sAmount " +

"owed is %s\nYou earned %s " +

"frequent renter points",

pat,

rentalInfo(

"\t", "", pat.getRentals())),

pat.statement());

}

@Test

public void steveStatement() {

assertEquals(

expStatement(

"Rental record for %s\n%s" +

"Amount owed is %s\nYou earned %s " +

"frequent renter points",

steve,

rentalInfo(

"\t", "", steve.getRentals())),

steve.statement());

}

Unit Testing, a First Example 28

public static String rentalInfo(

String startsWith,

String endsWith,

List<Rental> rentals) {

String result = "";

for (Rental rental : rentals)

result += String.format(

"%s%s\t%s%s\n",

startsWith,

rental.getMovie().getTitle(),

rental.getCharge(),

endsWith);

return result;

}

public static String expStatement(

String formatStr,

Customer customer,

String rentalInfo) {

return String.format(

formatStr,

customer.getName(),

rentalInfo,

customer.getTotalCharge(),

customer.getTotalPoints());

}

}

The following output is the result of running the above test.

Unit Testing, a First Example 29

JUnit version 4.11

.E.E..E

There were 3 failures:

1) johnStatement(CustomerTest)

org.junit.ComparisonFailure: expected:<...or John

Godfather 4[]9.0

Amount owed is 9...> but was:<...or John

Godfather 4[]9.0

Amount owed is 9...>

2) steveStatement(CustomerTest)

org.junit.ComparisonFailure: expected:<...r Steve

Godfather 4[9.0

Scarface]3.5

Amount owed is 1...> but was:<...r Steve

Godfather 4[9.0

Scarface]3.5

Amount owed is 1...>

3) patStatement(CustomerTest)

org.junit.ComparisonFailure: expected:<...for Pat

Godfather 4[9.0

Scarface 3.5

Lion King]1.5

Amount owed is 1...> but was:<...for Pat

Godfather 4[9.0

Scarface 3.5

Lion King]1.5

Amount owed is 1...>

FAILURES!!!

Tests run: 4, Failures: 3

At this point we have more clues about which tests are failing
and where; specifically, we know that davidStatement is

Unit Testing, a First Example 30

passing, so the issue must exist in the printing of rental infor-
mation. Unfortunately, we don’t currently have any strings to
quickly look at to determine whether the error exists in our
expected or actual values.

Unit Testing, a First Example 31

Expect Literals

The next step in increasing readability is expecting literal val-
ues. If you know where the problem exists, having DRY tests
can help ensure you type the fewest number of characters.
That said…

“Programming is not about typing… it’s about
thinking.” –Rich Hickey

At this point, our tests have become much smaller universes,
so small that I find myself wondering why I call a parame-
terized method, once, that does nothing more than return a
String. Within my tiny universe it would be much easier to
simply use a String literal.

A few printlns and copy-pastes later, my tests are much more
explicit, and my universes have gotten even smaller.

Unit Testing, a First Example 32

public class CustomerTest {

Customer john, steve, pat, david;

String johnName = "John",

steveName = "Steve",

patName = "Pat",

davidName = "David";

Customer[] customers;

@Before

public void setup() {

david = ObjectMother

.customerWithNoRentals(davidName);

john = ObjectMother

.customerWithOneNewRelease(johnName);

pat = ObjectMother

.customerWithOneOfEachRentalType(

patName);

steve = ObjectMother

.customerWithOneNewReleaseAndOneRegular(

steveName);

customers = new Customer[] {

david, john, steve, pat };

}

@Test

public void davidStatement() {

assertEquals(

"Rental record for David\nAmount " +

"owed is 0.0\n" +

"You earned 0 frequent renter points",

david.statement());

}

Unit Testing, a First Example 33

@Test

public void johnStatement() {

assertEquals(

"Rental record for John\n\t" +

"Godfather 4\t9.0\n" +

"Amount owed is 9.0\n" +

"You earned 2 frequent renter points",

john.statement());

}

@Test

public void patStatement() {

assertEquals(

"Rental record for Pat\n\t" +

"Godfather 4\t9.0\n" +

"\tScarface\t3.5\n" +

"\tLion King\t1.5\n" +

"Amount owed is 14.0\n" +

"You earned 4 frequent renter points",

pat.statement());

}

Unit Testing, a First Example 34

@Test

public void steveStatement() {

assertEquals(

"Rental record for Steve\n\t" +

"Godfather 4\t9.0\n" +

"\tScarface\t3.5\n" +

"Amount owed is 12.5\n" +

"You earned 3 frequent renter points",

steve.statement());

}

}

The failure output is exactly the same, but I’m now able to
look at the expected value as a simple constant, and reduce
my first question to: is my expected value correct? For those
coding along: we’ll assume the “fix” for the failure is to
change the expected value to match the implementation in
Rental.getLineItem (space delimited). The expected values
moving forward will reflect this fix.

note: Some reviewerswere offended by the getRentals
public method (though others were not). If a
method such as getRentals is something you’d
look to remove from your domain model, then
the Expect Literals refactoring provides you with
at least two benefits: the one you’ve already seen,
and the ability to delete the getRentals method
entirely. These types of improvements (deleting
code while also improving expressiveness is al-
ways an improvement, regardless of your pre-
ferred OO style) are not uncommon; improving
tests often allows you to improve your domain
model as well.

Unit Testing, a First Example 35

There’s an entire section dedicated to Expect Literals in
Improving Assertions

If this were more than a book example, my next step would
likely be adding fine grained tests that verify individual
methods of each of the classes that are collaborating with
Customer. Unfortunately, moving in that direction will first
require discussion on the benefits of fine grained tests and
the trade-offs of using mocks and stubs.

If you’re interested in jumping straight to this discussion it
can be found in the Types of Tests chapter.

Unit Testing, a First Example 36

Inline Setup

At this point it should be easy to find the source of the failing
test; however, our universes aren’t quite DAMP just yet.

Have you ever stopped to ask yourself why we use a design
pattern (Template Method) in our tests, when an explicit
method call is probably the appropriate choice 99% of the
time?

Creating instances of david, john, pat, & steve in Setup
moves characters out of the individual test methods, but
doesn’t provide us any other advantage. It also comes with
the conceptual overhead of each Customer being created,
whether or not it’s used. By adding a level of indirectionwe’ve
removed characters from tests, but we’ve forced ourselves to
remember who has what rentals. Removing a setup method
almost always reveals an opportunity for a local or global
improvement within a universe.

In this case, by removing Setup we’re able to further limit the
number of variables that require inspection when you first
encounter a test. With Setup removed you no longer need
to look for a Setup method, and you no longer need to care
about the Customer instances that are irrelevant to your tiny
universe.

Unit Testing, a First Example 37

public class CustomerTest {

@Test

public void noRentalsStatement() {

assertEquals(

"Rental record for David\nAmount " +

"owed is 0.0\n" +

"You earned 0 frequent renter points",

ObjectMother

.customerWithNoRentals(

"David").statement());

}

@Test

public void oneNewReleaseStatement() {

assertEquals(

"Rental record for John\n\t" +

"Godfather 4 9.0\n" +

"Amount owed is 9.0\n" +

"You earned 2 frequent renter points",

ObjectMother

.customerWithOneNewRelease(

"John").statement());

}

Unit Testing, a First Example 38

@Test

public void allRentalTypesStatement() {

assertEquals(

"Rental record for Pat\n\t" +

"Godfather 4 9.0\n" +

"\tScarface 3.5\n\tLion King 1.5\n" +

"Amount owed is 14.0\n" +

"You earned 4 frequent renter points",

ObjectMother

.customerWithOneOfEachRentalType(

"Pat").statement());

}

@Test

public void

newReleaseAndRegularStatement() {

assertEquals(

"Rental record for Steve\n\t" +

"Godfather 4 9.0\n" +

"\tScarface 3.5\n" +

"Amount owed is 12.5\n" +

"You earned 3 frequent renter points",

ObjectMother

.customerWithOneNewReleaseAndOneRegular(

"Steve").statement());

}

}

By Inlining Setup we get to delete both the Setup method and
the Customer fields. Our tests are looking nice and slim, and
they require almost no navigation to completely understand.
I went ahead and renamed the tests, deleted the unused
customers field, and inlined the single usage fields.

Unit Testing, a First Example 39

It’s confession time: I don’t like test names. Technically they’re
method names, but they’re never called explicitly. That alone
should make you somewhat suspicious. I consider method
names found within tests to be glorified comments that
come with all the standard warnings: they often grow out of
date, and are often a Code Smell⁴ emanating from bad code.
Unfortunately, most testing frameworks make test names
mandatory, and you should spend the time to create helpful
test names. While we refactored away from the looping test I
lazily named my tests based on the customer; however, I was
forced to create a more appropriate name as a side effect of
performing Inline Setup.

I believe this is another example of how well written tests
have side effects that improve associated code. I’ve personally
written testing frameworks that make test names optional,
that’s how little I care about test names. Still, once I performed
Inline Setup, the only reasonable choice was to create a
somewhat helpful test name.

Our tests are looking better and better, and I’m feeling mo-
tivated to continue the evolution. There’s still one additional
step I would take.

⁴http://en.wikipedia.org/wiki/Code_smell

http://en.wikipedia.org/wiki/Code_smell
http://en.wikipedia.org/wiki/Code_smell

Unit Testing, a First Example 40

Replace ObjectMother with
DataBuilder

ObjectMother is an effective tool when the scenarios are
limited and constant, but there’s no clear way to handle the
situation when you need a slightly different scenario. For
example, if you wanted to create a test for the statement

method on a Customer with two New Releases, would you
add another ObjectMother method or would you call the
addRental method on an instance returned?

Further complicating the issue: it’s often hard to know if
you’re dealing with objects that you can manipulate or if the
objects returned from an ObjectMother are reused. For exam-
ple, if you called ObjectMother.customerWithTwoNewReleases,
can you change the name on one of theNewRelease instances,
or was the same Movie supplied to addRental twice? You can’t
know without looking at the implementation.

At this point it would be natural to delete the ObjectMother
and simply create your domain model instances using new.
If the number of calls to new within your tests will be lim-
ited, that’s the pragmatic path. However, as the number
of calls to new grows so does the risk of needing to do a
cascading update. Say you have less than a dozen calls to
new Customer(...) in your tests and you need to add a
constructor argument, updating those dozen or less calls will
not severely impact your effectiveness. Conversely, if you
have one hundred calls to new Customer(...) and you add a
constructor argument, you’re now forced to update the code
in one hundred different places.

A DataBuilder is an alternative to a scenario based ObjectMother
that also addresses the cascading update risk. The following a

Unit Testing, a First Example 41

class is a DataBuilder that will allow us to build our domain
objects that aren’t tied to any particular scenario.

(I recommend skimming the following builder, we’ll revisit
Test Data Builders in detail in the TestDataBuilder section of
Chapter 6)

public class a {

public static CustomerBuilder customer =

new CustomerBuilder();

public static RentalBuilder rental =

new RentalBuilder();

public static MovieBuilder movie =

new MovieBuilder();

public static class CustomerBuilder {

Rental[] rentals;

String name;

CustomerBuilder() {

this("Jim", new Rental[0]);

}

CustomerBuilder(

String name, Rental[] rentals) {

this.name = name;

this.rentals = rentals;

}

public CustomerBuilder w(

RentalBuilder... builders) {

Rental[] rentals =

new Rental[builders.length];

Unit Testing, a First Example 42

for (int i=0; i<builders.length; i++) {

rentals[i] = builders[i].build();

}

return

new CustomerBuilder(name, rentals);

}

public CustomerBuilder w(String name) {

return

new CustomerBuilder(name, rentals);

}

public Customer build() {

Customer result = new Customer(name);

for (Rental rental : rentals) {

result.addRental(rental);

}

return result;

}

}

Unit Testing, a First Example 43

public static class RentalBuilder {

final Movie movie;

final int days;

RentalBuilder() {

this(new MovieBuilder().build(), 3);

}

RentalBuilder(Movie movie, int days) {

this.movie = movie;

this.days = days;

}

public RentalBuilder w(

MovieBuilder movie) {

return

new RentalBuilder(

movie.build(), days);

}

public Rental build() {

return new Rental(movie, days);

}

}

Unit Testing, a First Example 44

public static class MovieBuilder {

final String name;

final Movie.Type type;

MovieBuilder() {

this("Godfather 4",

Movie.Type.NEW_RELEASE);

}

MovieBuilder(

String name, Movie.Type type) {

this.name = name;

this.type = type;

}

public MovieBuilder w(Movie.Type type) {

return new MovieBuilder(name, type);

}

public MovieBuilder w(String name) {

return new MovieBuilder(name, type);

}

public Movie build() {

return new Movie(name, type);

}

}

}

The a class is undeniably longer than an ObjectMother;
however it’s not only more general it also puts the decision in
your hands to share or not share an object. Let’s look at what
our test could look like when utilizing a Test Data Builder.

Unit Testing, a First Example 45

note: w() is an abbreviation for with().

public class CustomerTest {

@Test

public void noRentalsStatement() {

assertEquals(

"Rental record for David\nAmount " +

"owed is 0.0\nYou earned 0 frequent " +

"renter points",

a.customer.w(

"David").build().statement());

}

@Test

public void oneNewReleaseStatement() {

assertEquals(

"Rental record for John\n\t" +

"Godfather 4 9.0\nAmount owed is " +

"9.0\nYou earned 2 frequent renter " +

"points",

a.customer.w("John").w(

a.rental.w(

a.movie.w(NEW_RELEASE))).build()

.statement());

}

Unit Testing, a First Example 46

@Test

public void allRentalTypesStatement() {

assertEquals(

"Rental record for Pat\n\t" +

"Godfather 4 9.0\n\tScarface 3.5\n" +

"\tLion King 1.5\nAmount owed is " +

"14.0\nYou earned 4 frequent renter " +

"points",

a.customer.w("Pat").w(

a.rental.w(a.movie.w(NEW_RELEASE)),

a.rental.w(a.movie.w("Scarface").w(

REGULAR)),

a.rental.w(a.movie.w("Lion King").w(

CHILDREN))).build()

.statement());

}

Unit Testing, a First Example 47

@Test

public void

newReleaseAndRegularStatement() {

assertEquals(

"Rental record for Steve\n\t" +

"Godfather 4 9.0\n\tScarface 3.5\n" +

"Amount owed is 12.5\nYou earned 3 " +

"frequent renter points",

a.customer.w("Steve").w(

a.rental.w(a.movie.w(NEW_RELEASE)),

a.rental.w(

a.movie.w(

"Scarface").w(REGULAR))).build()

.statement());

}

}

The above test is functionally equivalent to all the previous
test methods used to verify statement. This version does
require us to understand the abstract concept and concrete
implementation of a Test Data Builder ; however, there’s
no guarantee that you would need to visit the a class to
understand this test - even the first time you encounter the
test. The a class is a class used globally to create all domain
objects for all tests. With that kind of scope, unless this is your
first day on a project, it’s not really possible that you wouldn’t
have encountered the a class in the past.

To be more clear, the lone responsibility of a Test Data Builder
is to create domain objects with default values. Thus, even
if you’ve never seen this test before, without navigating to
a you’ll already know that you’re creating a customer with
sensible defaults. This is a rare example of an abstraction that,

Unit Testing, a First Example 48

despite adding indirection, also makes the test easier to digest.

With a Test Data Builder in place it becomes trivial to add an
additional test that verifies the case of 2 New Releases, or any
other rental combination that you find to be important.

As I previously mentioned, the choice to use a Test Data
Builder will likely depend on the number of calls to new and
your tolerance for cascading update risk. I introduce them
here due to their frequent usage throughout the book. In
practice I like to use new while there are half a dozen or fewer
calls to a constructor.

More information on Test Data Builders can be found in Nat
Pryce’s article on Test Data Builders⁵ and by skipping directly
to the TestDataBuilder section of Chapter 6.

⁵http://www.natpryce.com/articles/000714.html

http://www.natpryce.com/articles/000714.html
http://www.natpryce.com/articles/000714.html

Unit Testing, a First Example 49

Comparing the Results

Any fool can write code that a computer can
understand. Good programmers write code that
humans can understand. –Martin Fowler, Refac-
toring.

Applied to Unit Testing: Any fool can write a test
that helps them today. Good programmers write
tests that help the entire team in the future.

Below you can find both the before and after examples,
allowing a quick comparison.

Unit Testing, a First Example 50

Original

public class CustomerTest {

Customer john, steve, pat, david;

String johnName = "John",

steveName = "Steve",

patName = "Pat",

davidName = "David";

Customer[] customers;

@Before

public void setup() {

david = ObjectMother

.customerWithNoRentals(

davidName);

john = ObjectMother

.customerWithOneNewRelease(

johnName);

pat = ObjectMother

.customerWithOneOfEachRentalType(

patName);

steve = ObjectMother

.customerWithOneNewReleaseAndOneRegular(

steveName);

customers =

new Customer[]

{ david, john, steve, pat};

}

Unit Testing, a First Example 51

@Test

public void getName() {

assertEquals(

davidName, david.getName());

assertEquals(

johnName, john.getName());

assertEquals(

steveName, steve.getName());

assertEquals(

patName, pat.getName());

}

@Test

public void statement() {

for (int i=0; i<customers.length; i++) {

assertEquals(

expStatement(

"Rental record for %s\n" +

"%sAmount owed is %s\n" +

"You earned %s frequent " +

"renter points",

customers[i],

rentalInfo(

"\t", "",

customers[i].getRentals())),

customers[i].statement());

}

}

Unit Testing, a First Example 52

@Test

public void htmlStatement() {

for (int i=0; i<customers.length; i++) {

assertEquals(

expStatement(

"<h1>Rental record for " +

"%s</h1>\n%s" +

"<p>Amount owed is %s" +

"</p>\n<p>You earned %s" +

" frequent renter points</p>",

customers[i],

rentalInfo(

"<p>", "</p>",

customers[i].getRentals())),

customers[i].htmlStatement());

}

}

@Test

(expected=IllegalArgumentException.class)

public void invalidTitle() {

ObjectMother

.customerWithNoRentals("Bob")

.addRental(

new Rental(

new Movie("Crazy, Stupid, Love.",

Movie.Type.UNKNOWN),

4));

}

Unit Testing, a First Example 53

public static String rentalInfo(

String startsWith,

String endsWith,

List<Rental> rentals) {

String result = "";

for (Rental rental : rentals)

result += String.format(

"%s%s\t%s%s\n",

startsWith,

rental.getMovie().getTitle(),

rental.getCharge(),

endsWith);

return result;

}

public static String expStatement(

String formatStr,

Customer customer,

String rentalInfo) {

return String.format(

formatStr,

customer.getName(),

rentalInfo,

customer.getTotalCharge(),

customer.getTotalPoints());

}

}

Unit Testing, a First Example 54

Final

public class CustomerTest {

@Test

public void getName() {

assertEquals(

"John",

a.customer.w(

"John").build().getName());

}

@Test

public void noRentalsStatement() {

assertEquals(

"Rental record for David\nAmount " +

"owed is 0.0\nYou earned 0 frequent " +

"renter points",

a.customer.w(

"David").build().statement());

}

Unit Testing, a First Example 55

@Test

public void oneNewReleaseStatement() {

assertEquals(

"Rental record for John\n" +

"\tGodfather 4 9.0\n" +

"Amount owed is 9.0\n" +

"You earned 2 frequent renter points",

a.customer.w("John").w(

a.rental.w(

a.movie.w(

NEW_RELEASE))).build()

.statement());

}

@Test

public void allRentalTypesStatement() {

assertEquals(

"Rental record for Pat\n" +

"\tGodfather 4 9.0\n" +

"\tScarface 3.5\n" +

"\tLion King 1.5\n" +

"Amount owed is 14.0\n" +

"You earned 4 frequent renter points",

a.customer.w("Pat").w(

a.rental.w(a.movie.w(NEW_RELEASE)),

a.rental.w(

a.movie.w("Scarface").w(REGULAR)),

a.rental.w(

a.movie.w("Lion King").w(

CHILDREN))).build().statement());

}

Unit Testing, a First Example 56

@Test

public void

newReleaseAndRegularStatement() {

assertEquals(

"Rental record for Steve\n" +

"\tGodfather 4 9.0\n" +

"\tScarface 3.5\n" +

"Amount owed is 12.5\n" +

"You earned 3 frequent renter points",

a.customer.w("Steve").w(

a.rental.w(a.movie.w(NEW_RELEASE)),

a.rental.w(

a.movie.w("Scarface").w(

REGULAR))).build().statement());

}

@Test

public void noRentalsHtmlStatement() {

assertEquals(

"<h1>Rental record for David" +

"</h1>\n<p>Amount owed is " +

"0.0</p>\n<p>You earned 0 " +

"frequent renter points</p>",

a.customer.w(

"David").build().htmlStatement());

}

Unit Testing, a First Example 57

@Test

public void oneNewReleaseHtmlStatement() {

assertEquals(

"<h1>Rental record for John" +

"</h1>\n<p>Godfather 4 9.0</p>\n" +

"<p>Amount owed is 9.0</p>" +

"\n<p>You earned 2 frequent " +

"renter points</p>",

a.customer.w("John").w(

a.rental.w(

a.movie.w(

NEW_RELEASE))).build()

.htmlStatement());

}

Unit Testing, a First Example 58

@Test

public void allRentalTypesHtmlStatement() {

assertEquals(

"<h1>Rental record for Pat" +

"</h1>\n<p>Godfather 4 9.0</p>\n" +

"<p>Scarface 3.5</p>\n<p>Lion King" +

" 1.5</p>\n<p>Amount owed is " +

"14.0</p>\n<p>You earned " +

"4 frequent renter points</p>",

a.customer.w("Pat").w(

a.rental.w(a.movie.w(NEW_RELEASE)),

a.rental.w(

a.movie.w("Scarface").w(REGULAR)),

a.rental.w(

a.movie.w("Lion King").w(

CHILDREN))).build()

.htmlStatement());

}

Unit Testing, a First Example 59

@Test

public void

newReleaseAndRegularHtmlStatement() {

assertEquals(

"<h1>Rental record for Steve" +

"</h1>\n<p>Godfather 4 9.0</p>" +

"\n<p>Scarface 3.5</p>\n<p>Amount " +

"owed is 12.5</p>\n<p>" +

"You earned 3 frequent renter " +

"points</p>",

a.customer.w("Steve").w(

a.rental.w(a.movie.w(NEW_RELEASE)),

a.rental.w(

a.movie.w("Scarface").w(

REGULAR))).build()

.htmlStatement());

}

@Test

(expected=IllegalArgumentException.class)

public void invalidTitle() {

a.customer.w(

a.rental.w(

a.movie.w(UNKNOWN))).build();

}

}

Unit Testing, a First Example 60

Final Thoughts on our Tests

The tests in this chapter are fairly simple, and yet they still
providemore than enough content to create discussion among
most software engineers.

Whether you prefer the original or final versions of CustomerTest,
it’s undeniable that the final version creates far tinier uni-
verses to work within. At this point you should have a fairly
deep understanding of this simple example. That hard won
deep understanding can be misleading when assessing the
relativemerits of the two testing approaches. If youwrite tests
assuming the same level of understanding, you force future
maintainers to gain that understanding. Conversely, the tests
from the final example put all of the test data either directly
in the test or in what should be a globally understood class.

The decision to write DRY or DAMP tests often
comes down to whether or not you want to force
future maintainers to deeply understand code
written strictly for testing purposes.

An interesting side note: despite replacing DRY tests with
DAMP tests, the overall number of lines in the CustomerTest
class barely changed.

Unit Testing, a First Example 61

The ‘Final’ version of CustomerTest improved in a few subtle
ways that weren’t previously emphasized.

• A test that contains more than one assertion (or one
assertion that lives in a loop) will terminate on the first
failure. By breaking the iteration into individual tests
we were able to see all of the failures generated by our
domain code change.

• The invalidTitle test uses the same instance creation
code that all of the other Customer tests use. Now
that all Customer, Rental, and Movie instances are
created by a DataBuilder you can make constructor
argument changes and the only consequence will be
making a change to the buildmethod for the associated
*Builder class.

If you’re with me this far, it should be relatively clear what a
DAMP test is, and that I believe them to be far more valuable
than DRY tests. From here we’ll drop a bit into theory, then
straight into deeper examples of how to evolve your tests
towards a DAMP style, and finally we’ll finish with test suite
level improvements and what to avoid once you venture on
to Broad Stack Tests.

Motivators
There are many ways to succeed while writing tests; however,
let’s start with an example of the more common path.

Let’s imagine you read Unit Testing Tips: Write Maintainable
Unit Tests That Will Save You Time And Tears⁶ and decide
that Roy Osherove has shown you the light. You’re going to
write all your tests with Roy’s suggestions in mind. You get
the entire team to read Roy’s article and everyone adopts the
patterns.

Things are going well until you start accidentally breaking
tests that someone else wrote and you can’t figure out why.
It turns out that some object created in the Setup method
is causing unexpected failures due to a side-effect of your
‘minor’ change. You’re frustrated, having been burned by
Setup, and you remember the blog entry by Jim Newkirk
where he discussed Why you should not use SetUp and
TearDown in NUnit⁷. Now you’re stuck with a Setup heavy
test suite, and a growing suspicion that you’ve gone down the
wrong path.

You do more research on Setup and stumble upon Inline
Setup. You can entirely relate and go on amission to switch all
the tests to xUnit.net; xUnit.net removes the concept of Setup
entirely.

Everything looks good initially, but then a few constructors
start needing more dependencies. Every test creates an in-

⁶http://msdn.microsoft.com/en-us/magazine/cc163665.aspx
⁷http://jamesnewkirk.typepad.com/posts/2007/09/why-you-should-.html

http://msdn.microsoft.com/en-us/magazine/cc163665.aspx
http://msdn.microsoft.com/en-us/magazine/cc163665.aspx
http://jamesnewkirk.typepad.com/posts/2007/09/why-you-should-.html
http://jamesnewkirk.typepad.com/posts/2007/09/why-you-should-.html
http://msdn.microsoft.com/en-us/magazine/cc163665.aspx
http://jamesnewkirk.typepad.com/posts/2007/09/why-you-should-.html

Motivators 63

stance of an object; you moved the object creation out of the
Setup and into each individual test. So now every test that
creates that object needs to be updated. It becomes painful
every time you add an argument to a constructor. You’re once
again left feeling like you’ve been burnt by following “expert”
advice.

The root problem: you never asked yourself ‘why?’. Why
are you writing tests in the first place? Each testing practice
you’ve chosen, what motivated you to adopt it?

You won’t write better software by blindly following advice.
This is especially true given that much of the advice around
testing is inconsistent or outright conflicting. While I’m writ-
ing this chapter there’s currently a twitter discussion with
Martin Fowler, Michael Feathers, Bob Martin, Prag Dave, and
David Heinemeier Hansson (all well respected and successful
software engineers) where there are drastically conflicting
opinions on how to effectively test. If there’s a universally
right way, we haven’t found it yet.

It’s worth noting that the articles from Roy and
Jim are quite old. Roy has since changed his
mind on Setup (his current opinions can be found
at artofunittesting.com), and I’m sure Jim has
updated his opinions as well. The point of the
example is to show how it’s easy to blindly follow
advice that sounds good, not to tie a good or bad
idea with an individual.

Back to our painful journey above: your intentions were good.
You want to write better software, so you followed some
reasonable advice. Unfortunately, the advice you’ve chosen

Motivators 64

to follow left you with more pain than happiness. Your tests
aren’t providing enough value to justify their effort and if
you keep going down this path you’ll inevitably conclude that
testing is stupid and it should be abandoned.

If you’ve traveled the path above or if you aren’t regularly
writing unit tests, you may find yourself wondering why
other developers find them so essential. Ultimately I believe
the answer boils down to selecting testing patterns based on
what’s motivating you to test.

The remainder of this chapter will focus on defining testing
motivators. The list that follows is presented unordered, and
includes both helpful and harmful motivators. Neither inclu-
sion nor list index reflect the value of a motivator.

Validate the System

Common motivators that would be a subset of
Validate the System

• Immediate Feedback That Things Work as Expected
• Prevent Future Regressions

Static languages like Java provide a compiler that protects you
from a certain class of errors; however, unit tests often prove
their value when you need to verify not the type of a result,
but the value of the result. For example, if your shopping cart
cannot correctly calculate the total of each contained item, it
won’t really matter that the result is an Integer.

For this reason, every codebase would benefit from, if nothing
else, wrapping a few unit tests around the features of the

Motivators 65

system that if broken would cause the system to become
unusable.

Theoretically, you could write a test to validate every feature
of your system; however, I believe youwould quickly find this
task to be substantial and not necessarily worth your time -
certain features of your system will likely be more important
than others.

There’s a common term in finance: ROI

Return on investment (ROI) is the concept of an
investment of some resource yielding a benefit to
the investor. A high ROI means the investment
gains compare favorably to investment cost.

When I’m motivated to write a test to validate the system, I
like to look at the test from an ROI point of view. My favorite
example for demonstrating how I choose based on ROI is the
following:

Given a systemwhere customers are looked up exclusively by
Social Security Number

• I would unit test that a Social Security Number is valid
at account creation time

• I would not unit test that a user’s name is alpha-
numeric.

Losing a new account based on an invalid Social Security
Number could be rather harmful to a business; however,
storing an incorrect name for a limited amount of time should
have no impact on successful use of the system.

Motivators 66

As long as everyone on the team understands the ROI of the
various features, you could trust everyone to make the right
call on when and when not to test based on ROI. If your team
cannot reasonably grant that responsibility and power to each
team member then it will likely make sense to either pair
program or err on the side of over testing and evaluating the
ROI of each test during a code review.

Tests written to validate the system are often used both to
verify that the system currently works as expected as well as
to prevent future regression.

Code Coverage

Automated code coverage metrics can be a wonderful thing
when used correctly. Upon joining a project I often use code
coverage to get a feel for the level of quality that I can expect
from the application code. A low coverage percentage can
show probable lack of quality - though I would consider it
more of a hint than a guarantee. A high coverage percentage
would make me feel better about the likelihood of finding a
well designed codebase, but that’s also more of a hint than a
guarantee.

I expect a high level of coverage. Sometimesman-
agers require one. There’s a subtle difference. –
Brian Marick

I tend to agree with Martin Fowler’s view on the subject:
If you are testing thoughtfully and well, I would expect a
coverage percentage in the upper 80s or 90s. I would be
suspicious of anything like 100% - it would smell of someone

Motivators 67

writing tests to make the coverage numbers happy, but not
thinking about what they are doing.

Once upon a time a consultancy went as far as putting “100%
code coverage” in their contracts. It was a noble goal; unfortu-
nately, a few years later the same consultancy was presenting
on the topic of: How to fail with 100% test coverage. There are
various problems with pushing towards 100%:

• You’ll have to test language features.
• You’ll have to test framework features.
• You’ll have to maintain a lot of tests with negative ROI.
• etcetera

I find that code coverage metrics over time may
signal an interesting change that you may have
otherwise missed, but as an absolute number, it’s
not very useful. –John Hume

My favorite “100% code coverage” story involves
a team that added a bunch of tests to get to 100%…
but didn’t add any assertions. Code coverage
and verification are not the same thing. –Kent
Spillner

I suspect most projects will suffer from the opposite, not
enough coverage. The good news is it’s quite simple to run
a coverage tool and determine which pieces of code are
untested.

I’ve had success using EMMA and Clover, and John Hume
recently pointed me to Cobertura. Code coverage tools are

Motivators 68

easy to work with; there’s no reason you couldn’t try a few
and decide which you prefer.

Again, code coverage tools are great. I personally strive for
around 80% coverage. If you’re looking to get above 80%, it
would not surprise me to find tests that have code-coverage
as their lone motivator.

Enable Refactoring

Getting test coverage on an untested codebase is always
painful; however, it’s also essential if you’re planning to make
any changes within the codebase. With the proper tests in
place, you should be able to rewrite the internals of a codebase
without breaking any of the existing contracts.

In addition to helping you prevent regression, creating tests
can also give you direction on where the application can be
logically broken up. While writing tests for a codebase you
should keep track of dependencies that need to be instan-
tiated, mocked or stubbed but have nothing to do with the
current functionality you are focusing on. In general, these
are the pieces that should be broken into components that are
easily stubbed (ideally in 1 or 0 lines).

Document the Behavior of the System

When encountering a codebase for the first time, some devel-
opers go straight to the tests. These developers read the tests,
test names as well as method bodies, to determine the how
and why the system works as it does. These same developers
enjoy the benefits of automated tests, but they value the
documentation of tests almost as much or more than the
functional aspect of the tests.

Motivators 69

It’s absolutely true that the code doesn’t lie, and both correct
and incorrect comments (including test names) can often give
a view into what a developer was thinking when the test was
written. If developers use tests as documentation, it’s only
natural that they create many tests, some of which would
likely be unnecessary if they didn’t exist solely to document
the system.

Before you go deleting what appear to be superfluous tests,
make sure you don’t have someone on the team that sees your
worthless test as essential documentation.

Your Manager Told You To

If this were your only motivator for writing a test, I think
you’d be in a very paradoxical position. If you write worthless
tests you’re sure to anger your manager. Given that you’re
forced to write “meaningful” tests, I believe you’d want to
write the most maintainable tests possible despite your lack
of additional motivators. I imagine that you’ll want to spend
as little time as possible reading and writing tests, and the
only way I see accomplishing that is by focusing on main-
tainability.

Thus, even if you don’t particularly value testing, it will likely
benefit you to seek out the most maintainable way to write
tests in your context.

Test Driven Development

Common motivators that would be a subset of
TDD

• Breaking a Problem up into Smaller Pieces

Motivators 70

• Defining the “Simplest Thing that Could PossiblyWork”
• Improved Design

Unit Testing and TDD are often incorrectly conflated and
referred to by either name. Unit testing is an umbrella name
for testing at a certain level of abstraction. TDD has a very
specific definition:

Test-driven development (TDD) is a software
development process that relies on the repetition
of a very short development cycle: first the devel-
oper writes an (initially failing) automated test
case that defines a desired improvement or new
function, then produces the minimum amount of
code to pass that test, and finally refactors the
new code to acceptable standards. –Wikipedia

It’s not necessary towrite unit tests to TDD, nor is it necessary
to TDD to write unit tests.

That said, there’s a reason that the terms are often conflated:
If you’re practicing TDD, then you’re very likely also writing
a substantial amount of unit tests. A codebase written by
developers dogmatically following TDD would theoretically
contain no code that wasn’t written as a result of a failing
test. Proponents of TDD often claim that the results of TDD
give the existing team and future maintainers a greater level
of confidence.

TDD’s development cycle is also very appealing to developers
who can find a large problem overwhelming, but are able
to quickly break a large problem down into many smaller
tests that, when combined, solve the larger problem. Rather

Motivators 71

than focusing on the single large problem and trying to write
code that solves for every known problem, the developers
will focus on writing tests for each individual variable and
growing the code in a way where each test keeps passing and
each variable is dealt with individually.

Incredibly large and complicated problems don’t seem nearly
as daunting when programmers are able to focus exclusively
on the task at hand: make the individual test pass. In addi-
tion, all of the previously written tests provide a safety net,
thus allowing you to (harmlessly) ignore all prior constraints.

Proponents of TDD generally believe it promotes superior
design as well. Two reasons are the most often used when
describing the design benefits of TDD:

• By focusing on the test cases first, a developer is forced
to imagine how the functionalitywill be used by clients.

• TDD leads to more modularized, flexible, and extensi-
ble code by requiring that the developers think of the
software in terms of small units that can be written and
tested independently and integrated together later.

In my opinion every developer should practice TDD at some
point in their career. Utilizing TDD at the right moment will
unquestionably make you more productive. That said, the
frequency of those moments often depends greatly on the
individual. Only through experience can a developer know
how to judge whether the current moment would benefit or
suffer from switching to a TDD cycle.

An anonymous comment once appeared on my blog:

The developers that know how to write tests
correctly are very rare, and only those developers

Motivators 72

can really do TDD. The rest end up with a nest
of poorly written brittle tests that don’t fully test
the code.

It’s my hope that this book will help increase the number
of developers that are productively unit testing. Still, it’s
perfectly reasonable to delete a test that provided value as
part of a TDD cycle, but no longer has positive ROI.

Customer Acceptance

Unit Testing to achieve customer acceptance would be an
interesting choice. Rarely would a domain expert be willing
to sift through all of the unit tests to determine whether or
not they’re willing to sign off on the system. Thus, I imagine
you’d need to devise some type of filtering that allowed the
domain expert to drill down to what they believed to be
important.

My default choice is to enable the domain expert to write and
maintain tests in a tool designed for high level tests; removing
developers and unit tests almost entirely from the acceptance
process. However, if the developers must be responsible for
writing the tests used for customer acceptance, I would devise
a plan to annotate the appropriate unit tests and provide awell
formatted report based on the automated results.

In my experience, developers are willing to support customer
acceptance low level tests that can quickly be debugged when
they fail. Conversely, I’ve never seen a developer that was
happy to maintain tests that are both strictly for the customer
and high level (thus hard to debug).

Motivators 73

Ping Pong Pair-Programming

From the c2.com Wiki

here’s howPair Programmingworks onmy team.

1. A writes a new test and sees that it fails.
2. B implements the code needed to pass the

test.
3. B writes the next test and sees that it fails.
4. A implements the code needed to pass the

test.

And so on.

While the most popular definition obviously describes a TDD
approach, there’s no reason you couldn’t ping-pong writing
the test after. If you’re already pair programming, the rhythm
created by practicing ping-pong may be the only motivator
you need for writing a test. I’ve seen this approach utilized
very successfully.

Once a feature is complete it’s often worth your time to
examine the associated tests. Many of the recently created
tests will be valuable as is. Other tests may provide negative
ROI as written, but with small tweaks can be made to produce
positive ROI. Finally, any tests that were motivated solely by
the development process should be considered for deletion.

What Motivates You (or Your Team)

The primary driver for this chapter is to recognize that tests
can be written for many different reasons, and assuming that

Motivators 74

a test is necessary simply because it exists is not always the
right decision. It’s valuable to recognize which motivators are
responsible for a test that you’re creating or updating. If you
come across a test with no motivators, do everyone a favor
and delete the test.

I often write speculative tests that help me get to feature
completion, but are unnecessary in the long term. Those are
the tests that I look to delete once a feature is complete.
They’re valuable to me for brainstorming purposes, but aren’t
well designed for documentation, regression detection, or any
other motivator. Once they’ve served their purpose, I happily
kill them off.

Deleting tests that no longer provide value is an important
activity; however, deleting tests is an activity that shouldn’t
be taken lightly. Each test deletion likely requires at least a
little collaboration to ensure that (as I previously mentioned)
your valueless test isn’t someone else’s documentation.

More…
buy now: https://leanpub.com/wewut⁸

sign up for the announcements and offers mailing list (free):
http://signup.wewut.com⁹

join the discussion group (free): http://group.wewut.com¹⁰

⁸https://leanpub.com/wewut
⁹http://signup.wewut.com
¹⁰http://group.wewut.com

https://leanpub.com/wewut
http://signup.wewut.com
http://group.wewut.com
https://leanpub.com/wewut
http://signup.wewut.com
http://group.wewut.com

	Table of Contents
	Foreword
	Preface
	Acknowledgments
	Unit Testing, a First Example
	Thoughts on our Tests
	The Domain Code
	Moving Towards Readability
	Replace Loop with Individual Tests
	Expect Literals
	Inline Setup
	Replace ObjectMother with DataBuilder
	Comparing the Results
	Final Thoughts on our Tests

	Motivators
	More…

