

Automating and Testing a REST API
A Case Study in API testing using: Java, REST Assured,
Postman, Tracks, cURL and HTTP Proxies

Alan Richardson

This book is for sale at http://leanpub.com/testrestapi

This version was published on 2017-08-21

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean
Publishing process. Lean Publishing is the act of publishing an in-progress ebook using
lightweight tools and many iterations to get reader feedback, pivot until you have the right
book and build traction once you do.

© 2013 - 2017 Alan Richardson

http://leanpub.com/testrestapi
http://leanpub.com/
http://leanpub.com/manifesto

Contents

Thanks for Reading This Sample . 1

Introduction . 3

Introduction to APIs . 5
What Is a Web Application? . 5
Google Is an Example of a Web Application . 5
What Is an API? . 7
What Is an HTTP Request? . 8
What Is a URL? . 9
What Are HTTP Verbs? . 10
What Is an HTTP Response? . 11
What Is an HTTP Status Code? . 12
What Are Payloads? . 12
What Is JSON? . 13
What Is XML? . 13
What Are HTTP Headers? . 15
What Is Authentication? . 15
What Is REST? . 17
What Tools Are Used for Accessing an API? . 17
Example APIs . 18
Recommended Reading . 18
Summary . 18

Introducing Tracks Case Study . 19
Support Page . 19
How to Use This Case Study . 20
Source Code Location . 20
Case Study Contents Overview . 21

CONTENTS

Why Test Tracks? . 21
What Is Tracks and GTD? . 24

Installing Tracks . 26
Official Tracks Install . 26
Pre-Built Virtual Machines . 27
Using Virtual Machines . 28
Summary . 28

A Tour of Tracks . 29
Why Learn the GUI If We Are Testing the API? 29
Login . 30
Home Screen . 31
Starred Screen . 32
Projects . 33
Admin . 34
Basic Functions to Use and Check in the API . 35
Summary . 36

The Tracks REST API . 37
What Is a REST API? . 37
Tracks REST API Documentation . 38
API Doc Examples . 38
General HTTP REST Return Codes . 40
Summary . 40

Using a Proxy to View GUI Traffic . 41
Why? . 41
How? . 41
Viewing Traffic . 42
Implications . 44
Summary . 44

Exploring the Tracks API with cURL Through a Proxy 45
Using a Proxy with cURL . 45
For Debugging . 46
For Exploration . 46
For Simple Scope Coverage . 46
Summary . 46

CONTENTS

cURL Summary . 48

Exploring Tracks API with Postman REST Client 50
The GUI . 50
Issue Requests . 51
Postman Collections . 53
Environment Variables . 54
Authentication . 55
Using Postman Through a Proxy . 55
Recreate cURL Requests in Postman . 57
Summary . 57

Starting to Automate . 58
Why Explore First? . 58
Choosing a Java Library . 58
REST Assured Overview . 60
REST Assured Related Reading . 65
Summary . 66

About the Author . 67

Thanks for Reading This Sample . 68

Thanks for Reading This Sample
Thanks for reading this sample of my “Automating and Testing REST APIs” book. This is an
excerpt from the main book.

There should be enough in the sample to provide general introductory information to help
you get started with testing REST APIs, specifically the Tracks API.

What you basically have here are chapters 1, 2, 3, 4, 5, 8, 9 and 10. So you get to see:

• Introduction
• How to install tracks
• A GUI tour of tracks
• The tracks API Documentation
• Using a Proxy to view GUI traffic
• Using cURL through a Proxy
• cURL Reference Guide
• Starting to Automate Decisions

What you don’t see in here is the actual case study, about 120 pages (or more) of extra
information:

• How I used cURL to test the API
• How I used a proxy fuzzer to create users automatically via HTTP
• How I automated creating users with RESTAssured even though the RESTAPI doesn’t
support it

• Creating abstraction layers for REST API testing in Java
• How to use the REST Assured Java/Groovy library for HTTP/REST Testing
• Random Data Creation
• Refactoring and Next Steps

Absolutely masses of valuable and practical content.

But you do have links to all the tools, and libraries and you can view the source code on
GitHub so you can see exactly what I will explain in detail in the full book.

Thanks for Reading This Sample 2

I hope you enjoy the sample, and when you are ready to take the next step you can find out
more about the full book on my web site.

• compendiumdev.co.uk/page/tracksrestapibook1

1http://compendiumdev.co.uk/page/tracksrestapibook

http://compendiumdev.co.uk/page/tracksrestapibook
http://compendiumdev.co.uk/page/tracksrestapibook

Introduction
We can read on-line about the “Test Automation Pyramid” and we can also learn that “GUI
Automation is brittle” and “we should test under the GUI”. Fine. But how many in-depth
examples can you find? Examples that show you how to automate quickly, and how to
improve on that initial ‘quick fix’?

That’s what this case study is all about - an example of automating an application without
using GUI based libraries.

This case study will show how you can add value to a process quickly with fairly crude and
“hacky” code, and then how you can change that code to make it better.

Throughout the case study, I’m not just going to tell you how I did it. I’m going to explain
why, and what I could have done differently. Why I made the decisions I made, because then
you can try different approaches and build on this case study.

Since this is a case study, and not a ‘step by step’ course. I assume some basic knowledge:

• You know how to install Java and an IDE,
– if you don’t then the Starter Page2 on Java For Testers will help.

• You have some basic Web experience or HTTP knowledge,
– if not then my Technical Web Testing 1013 course might help or my YouTube
channel4.

I’ll cover some of the above topics, although not in depth. If you get stuck you can use the
resources above or contact me5.

The background behind this case study is that I’ve used Tracks as an Application Under Test
in a few workshops, for practising my own testing, and to improve my ability to automate.

For the workshops I built code to create users and populate the environment with test data.
I found that people like to learn how to do that, and I realised during the workshops that I
also approach this differently to other people.

2http://javafortesters.com/page/install/
3http://compendiumdev.co.uk/page.php?title=techweb101course
4http://eviltester.com/youtube
5http://compendiumdev.co.uk/contact

http://javafortesters.com/page/install/
http://compendiumdev.co.uk/page.php?title=techweb101course
http://eviltester.com/youtube
http://eviltester.com/youtube
http://compendiumdev.co.uk/contact
http://javafortesters.com/page/install/
http://compendiumdev.co.uk/page.php?title=techweb101course
http://eviltester.com/youtube
http://compendiumdev.co.uk/contact

Introduction 4

I didn’t automate under the GUI because I follow a “Test Automation Pyramid”. I automated
beneath the GUI:

• because it is fast,
• because we can do things we can’t do through the GUI.

By ‘Under the GUI’ I mean:

• Using the API (Application Programming Interface).
• Using the ‘APP as API’,

– sending through the HTTP that the GUI would have sent, but not using the GUI.

I explain ‘App as API’ in the case study later, and show examples of it in practice. I realised,
during the teaching of this stuff, that most people don’t automate in this way.

For most people testing ‘under the GUI’ means API. To me it means working at the different
system communication points anywhere ‘under’ the GUI. I explain this in the case study as
well.

Working under the GUI isn’t always easier. In this case study you’ll see that working through
the GUI would have been ‘easier’. I wouldn’t have had to manage cookie sessions and scrape
data off pages.

But working beneath the GUI is faster, once it is working, and arguably is more robust - but
we’ll consider that in more detail in the case study and you’ll see when it isn’t.

You’ll see initial code that I used for Tracks 2.2 and then updated for 2.3, I’ll walk you through
the reasons for the changes and show you the investigation process that I used and changes
I made.

If you haven’t automated an HTTP application below the GUI before then I think this case
study will help you learn a lot, and you’ll finish with a stack of ideas to take forward.

If you have automated the GUI before. I think you’ll enjoy learningwhy Imade the decisions I
made, and you’ll be able to compare themwith the decisions you’ve made in the past. I think,
after finishing the case study, you might expand the range of decisions you have open to you
in the future.

Introduction to APIs
This chapter will provide an introduction to the concept of an API (Application Programming
Interface) and concentrates on Web or Internet accessible APIs. I will explain most of the
concepts that you need to understand this book and I will start from the very basics. Most
of this chapter will be written colloquially for common sense understanding rather than to
provide formal computer science definitions.

You can probably skip this chapter if you are familiar with Web Services, URI and URL,
HTTP, HTTP Status Codes, JSON and XML.

Also, because this chapter covers a lot of definition, feel free to skip it if you want to get
stuck in to the practical aspects. You can always come back to this chapter later if you don’t
understand some basic terminology.

First I’ll start by saying that we are going to learn how to test Web Applications. i.e.
Applications that you can access over a network or the internet without installing them on
your machine.

The Web Application we will test has an API, which is a way of accessing the application
without using a Web Browser or the application’s Graphical User Interface (GUI).

What Is a Web Application?

AWeb Application is a software application that is deployed to aWeb Server. This means the
application is installed onto a computer and users access the application via a Web Browser.

Google Is an Example of a Web Application

google.com is an example of a Web Application. A user visits google.com in a Browser and
the application’s Graphical User Interface (GUI) is displayed in the Browser. The GUI consists
of a search input field which the user fills in and then clicks a button to search the Web.

When the user clicks the search button, the Browser makes a request to the Web Application
on the Web Server to have the Google Search Application make the search and return the
results to the user in the form of a web page with clickable links.

Basically,

Introduction to APIs 6

• Web Browser -> Sends a Request to -> Web Application
• Web Application -> Processes Request and Sends a Web Page as Response to -> Web
Browser

The requests that the Browser sends to the Web Server are HTTP requests. HTTP requests
are a way of sending messages between machines over the Internet. Think of HTTP as the
format of the message that Browser and Web Server send to each other.

When we first visit Google in a Browser we type in the URL or address for Google. i.e.
https://google.com

The Browser then sends a type of HTTP request to Google called a GET request to ‘get’, or
retrieve, the main search form. Google Web Application receives the request and replies with
an HTTP response containing the HTML of the search page. HTML is the specification for
the Web Page so the Browser knows how to display it to the user.

When the user types in a search term and presses the search button. The Browser sends a
POST request to Google. The POST request is different from the GET request because it contains
the details of the search term that the user wants the Google Web Application to search for.

The Google Web Application then responds with an HTTP response that contains the HTML
containing all the search results matching the User’s search term.

Introduction to APIs 7

Google is an example of a Web Application with a GUI, and because the user accesses the
Web Application through a Browser they are often unaware of the HTTP requests, or that
different types of HTTP requests are being made.

When we test HTTP APIs we have to understand the details of HTTP requests.

What Is an API?

An API is an Application Programming Interface. This is an interface to an application
designed for other computer systems to use. As opposed to a Graphical User Interface (GUI)
which is designed for humans to use.

APIs come in many different forms with and technical implementations but this book
concentrates on HTTP or Web APIs.

An HTTP based API is often called aWeb API since they are used to accessWeb Applications
which are deployed to Servers accessible over the Internet.

Applications which are accessed via HTTP APIs are often called Web Services.

Mobile Applications often use Web Services and REST APIs to communicate with servers
to implement their functionality. The Mobile Application processes the message returned
from the Web Service and displays it to the User in the application GUI. So again, the user is
unaware that HTTP requests are being made, or of the format of the requests and responses.

Introduction to APIs 8

What Is an HTTP Request?

HTTP stands for Hypertext Transfer Protocol and is a way of sending messages to software
on another computer over the Internet or over a Network.

An HTTP request is sent to a specific URL and consists of:

• a VERB specifying the type of request e.g. GET, POST, PUT, DELETE
• A set of HTTP Headers. The headers specify information such as the type of Browser,
type of content in the message, and what type of response is accepted in return.

• A body, or payload in the request, representing the information sent to, or from, the
Web Application. Not all HTTP messages can have payloads: POST and PUT can have
payloads, GET and DELETE can not.

HTTP requests are text based messages and over the course of this Case Study you will learn
to read them e.g.

GET http://compendiumdev.co.uk/apps/mocktracks/projectsjson.php HTTP/1.1

Host: compendiumdev.co.uk

User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64)

AppleWebKit/537.36 (KHTML, like Gecko)

Chrome/59.0.3071.115 Safari/537.36

Accept: text/html,application/xhtml+xml,

application/xml;q=0.9,image/webp,image/apng,*/*;q=0.8

The above HTTP request is a GET request, which is a READ request:

• to read the page from the URL
– http://compendiumdev.co.uk/apps/mocktracks/projectsjson.php

• request is made from the Chrome Browser version 59. You can see this in the ‘User-
Agent’ header. Yes, the header also mentions ‘Safari’, ‘AppleWebKit’ and ‘Mozilla’, this
is for various reasons of backwards compatibility, but it was sent from Chrome version
59. For more information on User-Agent visit useragentstring.com6.

6http://www.useragentstring.com

http://www.useragentstring.com/
http://www.useragentstring.com/

Introduction to APIs 9

What Is a URL?

URL is a Uniform Resource Locator and is the address we use to access websites and web
applications.

When working with APIs you will often see this referred to as a URI (Uniform Resource
Identifier).

Think of a URI as the generic name for a URL.

When we want to call an HTTP API we need the URL for the endpoint we want to call e.g

http://compendiumdev.co.uk/apps/mocktracks/projectsjson.php

This is the locator that says “I want to call the apps/mocktracks/projectsjson.php resource
located at compendiumdev.co.uk using the http protocol”.

For the purposes of this book I will use the phrase URL, but you might see URI mentioned
in some of the source code. I use URL because the locator contains the protocol or scheme
required to access it (http).

The above URL can be broken down into the form:

scheme://host/resource

• scheme - http
• host - compendiumdev.co.uk
• resource - apps/mocktracks/projectsjson.php

A larger form for a URL is:

scheme://host:port/resource?query#fragment

I didn’t use a port in the URL, for some applications you might need to.

By default http uses port 80, so I could have used:

http://compendiumdev.co.uk:80/apps/mocktracks/projectsjson.php

Also I haven’t used a query because this endpoint doesn’t need one.

The query is a way of passing parameters in the URL to the endpoint e.g. Google uses query
parameters to define the search term and the page:

https://www.google.co.uk/?q=test&start=10#q=test

Introduction to APIs 10

• scheme - https
• host - www.google.co.uk
• query - q=test&start=10
• fragment - q=test

The query is the set of parameters which are key, value pairs delimited by ‘&’ e.g. q=test
and start=10 (“start” is a key, and “10” is the value for that key).

When working with APIs it is mainly the scheme, host, port and query that you will use.

You can learn more about URL and URI online7.

What Are HTTP Verbs?

A Web Browser will usually make GET requests and POST requests.

• GET requests ask to read information from the server e.g. clicking on a link.
• POST requests supply information to the server e.g. submitting a form.

GET requests do not have a body, and just consist of the Verb, URL and the Headers.

POST requests can have a payload body e.g.

POST http://www.compendiumdev.co.uk/apps/mocktracks/reflect.php HTTP/1.1

Host: www.compendiumdev.co.uk

User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64)

AppleWebKit/537.36 (KHTML, like Gecko)

Chrome/59.0.3071.115 Safari/537.36

Accept: text/html,application/xhtml+xml,

application/xml;q=0.9,image/webp,image/apng,*/*;q=0.8

{"action":"post"}

When working with a Web Application or HTTP API the typical HTTP Verbs used are:

• GET, to read information.
7https://en.wikipedia.org/wiki/Uniform_Resource_Identifier

https://en.wikipedia.org/wiki/Uniform_Resource_Identifier
https://en.wikipedia.org/wiki/Uniform_Resource_Identifier

Introduction to APIs 11

• POST, to create information.
• PUT, to amend or create information.
• DELETE, to delete information, this is rarely used for Browser accessed applications,
but often used for HTTP APIs.

POST and PUT requests would usually have a message body. GET and DELETE would not.

HTTP Verbs are described in the W3c Standard8 and IETF standard9.

What Is an HTTP Response?

When you issue an HTTP Request to the server you receive an HTTP Response.

The response from the server tells you if your request was successful, or if there was a
problem.

HTTP/1.1 200 OK

Date: Fri, 30 Jun 2017 13:50:11 GMT

Connection: close

Content-Type: application/json

{

"projects": {

"project": [

{

"id": 1,

"name": "A New Project",

"position": 0,

"description": "",

"state": "active",

"created-at": "2017-06-27T12:25:26+01:00",

"updated-at": "2017-06-27T12:25:26+01:00"

}

]

}

}

The above response has:

8https://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html
9https://tools.ietf.org/html/rfc7231

https://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html
https://tools.ietf.org/html/rfc7231
https://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html
https://tools.ietf.org/html/rfc7231

Introduction to APIs 12

• A status code of 200, which means that the request was successful.
• A Content-Type header of application/json which means that the body is a JSON
response.

• A body which contains the actual payload response from the server.

What Is an HTTP Status Code?

Web Services and HTTP APIs use HTTP Status Codes to tell us what happened when the
server processed the request.

The simple grouping for HTTP Status Codes is:

• 1xx - Informational
• 2xx - Success e.g. 200 Success
• 3xx - Redirection e.g. 302 Temporary Redirect
• 4xx - Client Error e.g. 400 Bad Request, 404 Not Found
• 5xx - Server Error e.g. 500 Internal Server Error

The type of status code you receive depends on the application you are interacting with.
Usually a 4xx error means that you have done something wrong and a 5xx error means that
something has gone wrong with the application server you are interacting with.

You can learn more about status codes online:

• Wikipedia List10

• HTTP Statuses11

What Are Payloads?

A Payload is the body of the HTTP request or response.

When browsing the Web, the Browser usually receives an HTML12 payload. This is the web
page that you see rendered in the Browser.

Typically whenworking with an HTTPAPI wewill send and receive JSON or XML payloads.

You saw JSON payloads in the examples above.
10https://en.wikipedia.org/wiki/List_of_HTTP_status_codes
11https://httpstatuses.com/
12https://en.wikipedia.org/wiki/HTML

https://en.wikipedia.org/wiki/List_of_HTTP_status_codes
https://httpstatuses.com/
https://en.wikipedia.org/wiki/HTML
https://en.wikipedia.org/wiki/List_of_HTTP_status_codes
https://httpstatuses.com/
https://en.wikipedia.org/wiki/HTML

Introduction to APIs 13

What Is JSON?

JSON stands for JavaScript Object Notation and is a text representation that is also valid
JavaScript code.

{

"projects": {

"project": [

{

"id": 1,

"name": "A New Projectaniheeiadtatd",

"position": 0,

"description": "",

"state": "active",

"created-at": "2017-06-27T12:25:26+01:00",

"updated-at": "2017-06-27T12:25:26+01:00"

}

]

}

}

JSON can be thought of as a hierarchical set of key/value pairs where the value can be:

• Object - delimited by { and }.
• Array - delimited by [and].
• String - delimited by " and ".
• Integer

An array is a list of objects or key/value pairs.

The keys are String values e.g. “projects”, “project”, “id”, etc.

What Is XML?

XML stands for Extensible Markup Language.

HTML is a variant of XML.

Introduction to APIs 14

<?xml version="1.0" encoding="UTF-8"?>

<projects type="array">

<project>

<id type="integer">1</id>

<name>A New Projectaniheeiadtatd</name>

<position type="integer">0</position>

<description nil="true"/>

<state>active</state>

<created-at type="dateTime">2017-06-27T12:25:26+01:00

</created-at>

<updated-at type="dateTime">2017-06-27T12:25:26+01:00

</updated-at>

<default-context-id type="integer" nil="true"/>

<completed-at type="dateTime" nil="true"/>

<default-tags nil="true"/>

<last-reviewed type="dateTime" nil="true"/>

</project>

</projects>

XML is constructed from nested elements

• An element has an opening and closing tag e.g. <state> and </state>.
– The tag has a name i.e. state.
– The opening tag begins with < and ends with > e.g. <state>.
– The closing tag begins with </ and ends with > e.g. </state>.

• An element has a value, which is the text between the tags e.g. the state element has
a value of active.

• An element can have attributes, these are always within the opening tag e.g. the
id element (<id type="integer">) has an attribute named type with a value of
"integer".

• Elements can contain other Elements. These are called Nested Elements. e.g. the
projects element has a nested element called project.

For XML to be valid, it must be well formed, meaning that every opening tag must have a
corresponding closing tag, and strings must have an opening and closing quote.

Some elements do not have a closing tag, these are self closing. The opening tag, instead of
ending with > actually ends with /> you can see this in the <description nil="true"/>

element.

Introduction to APIs 15

What Are HTTP Headers?

HTTP messages have the Verb and URL, followed by a set of headers, and then the optional
payload.

POST http://www.compendiumdev.co.uk/apps/mocktracks/reflect.php HTTP/1.1

Host: www.compendiumdev.co.uk

Content-Type: application/json

Accept: application/json

{"action":"post"}

The headers are a set of meta data for the message.

Headers are a name, followed by :, followed by the value of the header.

The above HTTP message example has three headers:

• Host
• Content-Type
• Accept

The Host header defines the destination server domain name.

The Content-Type header tells the server that the content of this message is JSON.

The Accept header tells the server that the client (application sending the message) will only
accept response payloads represented in JSON.

There are many headers available13 for configuring the Authentication details, length of
message, custom meta data, cookies etc.

What Is Authentication?

When we send a message to a server we might need to be authenticated i.e. authorised to
send a message and receive a response.

For many Web Applications you authenticate yourself in the application by logging in with
a username and password. The same is true for Web Services or HTTP APIs.

13https://en.wikipedia.org/wiki/List_of_HTTP_header_fields

https://en.wikipedia.org/wiki/List_of_HTTP_header_fields
https://en.wikipedia.org/wiki/List_of_HTTP_header_fields

Introduction to APIs 16

If you are not authenticated and try to send a message to a server then you are likely to
receive a response from the server with a 4xx status code e.g.

• 401 Unauthorized
• 403 Forbidden

There are many ways to authenticate HTTP requests for HTTP APIs.

Some common approaches you might encounter are:

• Custom Headers
• Basic Authentication Headers
• Session Cookies

Some HTTP APIs require Custom Headers e.g.

POST http://www.compendiumdev.co.uk/apps/mocktracks/reflect.php HTTP/1.1

X-APPLICATION_KEY: asds-234j-werw

Here the X-APPLICATION-KEY header has a secret value which authenticates the request.

Basic Authentication Headers are a standard approach for simple login details:

POST http://www.compendiumdev.co.uk/apps/mocktracks/reflect.php HTTP/1.1

Authorization: Basic Ym9iOmRvYmJz

The Authorization header specifies Basic authentication and is followed by a base6414

encoded string.

• “Ym9iOmRvYmJz” is the base64 encoded version of the string “bob:dobbs”
• In Basic Authentication the string represents username:password

SessionCookies15 are set by a server in a responsemessage and are represented in a Cookies:
header.

14https://en.wikipedia.org/wiki/Base64
15https://developer.mozilla.org/en-US/docs/Web/HTTP/Cookies

https://en.wikipedia.org/wiki/Base64
https://developer.mozilla.org/en-US/docs/Web/HTTP/Cookies
https://en.wikipedia.org/wiki/Base64
https://developer.mozilla.org/en-US/docs/Web/HTTP/Cookies

Introduction to APIs 17

What Is REST?

REST stands for Representational State Transfer, and while it has a formal definition, which
you can read in Roy Fielding’s PHd thesis16, it very often means that the API will respond to
HTTP verbs as commands.

e.g.

• GET, to read information.
• POST, to create information.
• PUT, to amend information.
• DELETE, to delete information.

The documentation for the particular system you are testing will describe how the API has
interpreted REST if they have described their API as a REST API.

What Tools Are Used for Accessing an API?

Since API stands for Application Programming Interface, we might expect all interaction
with the API to be performed via program code. But it really implies that the interface is
well documented and does not change very often.

Also that the input and output from the API are designed for creation and consumption by
code - hence the use of formats like JSON and XML.

We can issue API requests from a command line with tools like cURL, which you will see
later in this book.

Also GUI tools like Postman, which we cover in a later chapter, allow humans to easily
interact with APIs.

When writing application code to interface with an API we are generally able to use a library
for the specific programming language that we are working with.

In this book we are using Java and will use the REST Assured library.

16http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm

http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm

Introduction to APIs 18

Example APIs

If you want a very simple API to experiment with at the moment, then I recommend the Star
Wars API Web Application.

• swapi.co17

This is a very simple API that mainly uses GET requests and returns information about Star
Wars characters and planets.

The API is well documented and has an online GUI that you can use to experiment with the
API.

Recommended Reading

The REST API Tutorial18 provides a good overview of REST APIs, HTTP Status codes and
Verbs.

Summary

This chapter provided a very high level description of an API (Application Programming
Interface) to differentiate it from a GUI (Graphical User Interface). An API is designed to be
used for systems and applications to communicate, whereas a GUI is designed for humans
to use.

Humans can use API interfaces. Tools such as cURL and Postman can help. We also have the
advantage that for HTTP APIs, the messages are in text format and usually contain human
readable JSON or XML format payloads.

The status codes that are returned when requests are sent to an API help you understand if
the request has been successful (200, 2xx), or if there was something wrong with the request
(4xx), or if something went wrong in the server application (5xx).

At the very least, you should now be familiar with the terms we will be using in this case
study, and have seen some examples of HTTP messages for both requests and responses.

17https://swapi.co
18http://www.restapitutorial.com/

https://swapi.co/
http://www.restapitutorial.com/
https://swapi.co/
http://www.restapitutorial.com/

Introducing Tracks Case Study
This Case Study uses a Web Application called Tracks.

Tracks is a Todo Management and Productivity tool with a Web GUI and a REST API. The
API uses XML as its Payload format.

This chapter will provide details of why we are using Tracks, where to find the source code
and supporting information to help you get started.

Support Page

This book has an on-line support web page:

• compendiumdev.co.uk/page/tracksrestsupport19

The web page contains:

• Links to the important websites and tools mentioned.
• Links to the code.
• Links to the Postman collection file.
• Any errata or update information on the book.
• Links to any supporting blog posts.
• Links to any supporting videos.

Some of the web page sections will be mentioned in this book, but others will be added over
time as it might be easier to add new content to the web page, than to add it into the book.

19http://compendiumdev.co.uk/page/tracksrestsupport

http://compendiumdev.co.uk/page/tracksrestsupport
http://compendiumdev.co.uk/page/tracksrestsupport

Introducing Tracks Case Study 20

How to Use This Case Study

By the time you work through this case study, the version of Tracks will probably have
increased. That might mean that some of the information here is out of date. You might not
be able to exactly repeat all the steps and see the same results.

If you want to repeat the steps and achieve the same results then you could install the version
of Tracks I mention in this book, and possibly the associated software that I used to test it
at the time. Tracks is Open Source and the old versions are available to install; but I don’t
recommend you do that.

Instead, I recommend that you read the text, watch the videos (on the supporting web page),
and perform ‘looser’ experiments. i.e. do the same, or similar things, but don’t expect the
result to be exactly the same, or look exactly the same, when you do it.

Over the course of the case study I used two versions of tracks: 2.2 and 2.3.

Tracks did change between these versions.

This required changes to the code that I wrote to automate Tracks, and later I’ll show you
what I changed in the code, and how I investigated the changes.

By the time you come to follow this case study, Tracks may have advanced again, and the
code may need to change again.

You may need to change it. Since this is a case study, that is one of the exercises left to you.

Rather than starting from scratch, you can see what and why I created code, then you can
change it to work for the current version. You can then take the code forward if you want.

A case study is a time bound body of work. It is what I did at a specific point in time. I’m
communicating it so that you can learn from it, and build on it, not so you can repeat it
exactly.

Source Code Location

All of the source code for REST Assured and Java mentioned in the book is available on
GitHub:

• github.com/eviltester/tracksrestcasestudy20

20https://github.com/eviltester/tracksrestcasestudy

https://github.com/eviltester/tracksrestcasestudy
https://github.com/eviltester/tracksrestcasestudy

Introducing Tracks Case Study 21

A chapter later in the book called “How to Use the Source Code” describes how to download
the source code and install the JAVA SDK and IDE you’ll need to run the code.

Case Study Contents Overview

• An overview of the Tracks application and its API
• How to use cURL to explore an API
• How to use Postman to explore an API
• How to use a Proxy to help automate and explore
• How to use REST Assured from Java:

– Get URLs
– Post forms
– REST API testing

* GET

* POST

– XML Response processing
– JSON Response processing
– Serialize payload objects to JSON and XML
– Deserialize JSON and XML to Java objects

• Different stages of code
– Code that gets something done
– Code that we re-use
– Code that we can use for the long term
– How we refactor between these stages

• Scraping data from other sites to use as test data
• Thought processes and critical evaluation of the work
• Thoughts on REST Assured
• How to improve the code used in this case study
• Exercises for you to try

Why Test Tracks?

Why pick Tracks as an application to test?

Introducing Tracks Case Study 22

Tracks21 is an open source application written in Ruby on Rails so is relatively easy to install
and use. Although, I should mention that, I have always used a pre-built virtual machine
from Bitnami or Turnkey (more details later).

Practice Your Testing

I’ve been aware of Tracks as an application for quite a long time, and I’ve even experimented
with it as a ‘real’ application i.e. one that I would use to track my TODO lists and manage
my work.

I don’t use Tracks to manage my work but I do use it as a target for practising my testing.

I’ve used it:

• personally to practice my testing
• personally to practice automating with WebDriver
• personally to learn new tools and experiment with proxies
• on training courses to provide a ‘real’ application to automate with WebDriver
• on training courses to provide a target for exploratory testing
• as part of the Black Ops Testing22 workshops

I’ve primarily used it to practice testing. I hope that’s one reason why you are working
through this case study - because you want to practice your testing and improve.

Real Application

Tracks is a ‘real’ application.

I have built applicationswhich are only used for the purposes of supporting training exercises.
These tend to have limitations:

• specific aims - to exhibit particular flaws,
• they tend not to be rich in functionality,
• the GUI probably isn’t polished,
• they might be deliberately limited e.g. no database, no security, etc.

21http://www.getontracks.org/
22http://blackopstesting.com

http://www.getontracks.org/
http://blackopstesting.com/
http://www.getontracks.org/
http://blackopstesting.com/

Introducing Tracks Case Study 23

Since Tracks is built for production use it does not have artificial limits, and it changes over
time which means that I can keep revisiting it to practice against new functionality.

It also has the type of bugs that slip through the net, some are easy to spot, some are not
important, others are harder to spot and you have to work to find them.

Tracks has grown organically over time and isn’t as basic as an application designed to be
used for teaching testing and automating.

Tracks is built by a dedicated and passionate team of developers in their spare time. They also
write a lot of code to help them test so we could review their automated execution coverage
and use that to guide our testing.

Rich Functionality

Tracks has a lot of functionality and ways of accessing the functionality that a simpler ‘test’
application would not have:

• Tracks has a complex GUI.
• Tracks has a REST API.
• Tracks has a mobile GUI interface.
• Tracks is a client/server application.
• Tracks has a database.
• Tracks is multi-user.

Tracks has a complex GUI. The GUI also uses a lot of JavaScript, Ajax calls and DOM
updating, this makes it appear more ‘modern’, but also offers challenges to the tester when
automating through the GUI. This also opens up new technologies for the tester to learn.

Tracks has a REST API. Which allows us to experiment with more technical approaches to
testing and going behind the GUI to learn new tools and approaches, exploring different risks
than the GUI alone offers.

Tracks has a mobile GUI interface. Allowing us to experiment with device based testing in
combination with browsers and APIs.

Tracks is a client/server application. Allowing us to focus on the client, or the server side
functionality, and the interaction between the two. This also opens up server side logging
and server side access. When you are testing a Browser application on a Windows machine
and have to connect to a server running in a VM using Linux, you learn to switch between
different operating system contexts and have to learn new technology to be able to test.

Introducing Tracks Case Study 24

Tracks has a database. Allowing us to learn how to access it from a GUI tool, or from
the command line. We don’t have to access the database, but if we extend our testing to
encompass the database then we will:

• learn new skills,
• spot new risks to test for,
• have the ability to investigate the cause of defects more deeply,
• manage our environment at a lower level.

Tracks is multi-user. This opens up risks around security, performance, testing under load
etc.

Tracks also has the advantage that it is a very focused application, so while it offers a lot
of features for testing, it is a small enough domain that we can understand the scope of the
application.

Rich Testing Scope

I’ve been using Tracks as a test target for years. Every time I come to test it I can easily lose
myself in it for days at a time.

This case study concentrates on the API and the client server interaction, but in no way does
this approach to testing cover everything that Tracks offers. And I have not spent enough
time to say that I have learned or tested everything about Tracks.

But I have spent enough time testing Tracks to be able to recommend it as a great testing
target, and the time I’ve spent practising with it, has improved my testing skills and technical
skills.

I think the time you spend working through this case study and applying the approaches to
Tracks will improve your testing skills. Make sure you apply the techniques and approaches
you see here, not just read about it, or watch the videos.

Only application of the approaches will help you advance.

What Is Tracks and GTD?

Tracks is an open source application written in Ruby on Rails which implements the David
Allen “Getting Things Done” time management methodology.

Introducing Tracks Case Study 25

• Tracks Home Page - getontracks.org23

• Getting Things Done24

Getting Things Done

For the purposes of this case study we don’t really need to know the Getting Things Done
methodology, we do have to understand the entities involved and their relationships, and
how Tracks implements them, but if you’d like some additional domain knowledge then I’ll
cover it here.

GTD is a time management approach with a number of concepts:

• Projects - groups of Tasks which need to be done to implement the project
• Contexts - ‘places’ where Tasks can be done e.g. @Home, @Shops etc.
• Tasks - have a due date so they can appear on a calendar and you can track slippage
or poor schedule estimating. I tend to think of these as TODOs and so I use the term
‘Task’ and ‘TODO’ interchangeably.

If youwant to learnmore about the GTD domain then the following linksmay also be helpful:

• Lifehacker summary25

• Additional documentation on Tracks Wiki26

23http://www.getontracks.org/
24https://en.wikipedia.org/wiki/Getting_Things_Done
25http://lifehacker.com/productivity-101-a-primer-to-the-getting-things-done-1551880955
26https://github.com/TracksApp/tracks/wiki/Help-%26-Support

http://www.getontracks.org/
https://en.wikipedia.org/wiki/Getting_Things_Done
http://lifehacker.com/productivity-101-a-primer-to-the-getting-things-done-1551880955
https://github.com/TracksApp/tracks/wiki/Help-&-Support
http://www.getontracks.org/
https://en.wikipedia.org/wiki/Getting_Things_Done
http://lifehacker.com/productivity-101-a-primer-to-the-getting-things-done-1551880955
https://github.com/TracksApp/tracks/wiki/Help-&-Support

Installing Tracks
Since we are using Tracks as a learning target we want to find easy ways to install it. I tend
to use a pre-built virtual machine.

Because this chapter has the risk of becoming out of date I recommend that you visit the
book support page if you experience any install difficulties:

• compendiumdev.co.uk/page/tracksrestsupport27

In this chapter I describe:

• how to use the official install from getontracks.org28,
• pre-built virtual machines from Turnkey29

– my preferred method for runnning Tracks

Official Tracks Install

The Tracks Download page has links to the install instructions. I include this for your
reference, but this is not how I install Tracks, I use a Virtual Machine.

• getontracks.org/downloads30

The master install documentation is on GitHub:

• github.com/TracksApp/tracks/blob/master/doc/installation.md31

Each version may have a slightly different installation process:

27http://www.compendiumdev.co.uk/page/tracksrestsupport
28http://www.getontracks.org
29https://www.turnkeylinux.org/tracks
30http://www.getontracks.org/downloads/
31https://github.com/TracksApp/tracks/blob/master/doc/installation.md

http://www.compendiumdev.co.uk/page/tracksrestsupport
http://www.getontracks.org/
https://www.turnkeylinux.org/tracks
http://www.getontracks.org/downloads/
https://github.com/TracksApp/tracks/blob/master/doc/installation.md
http://www.compendiumdev.co.uk/page/tracksrestsupport
http://www.getontracks.org/
https://www.turnkeylinux.org/tracks
http://www.getontracks.org/downloads/
https://github.com/TracksApp/tracks/blob/master/doc/installation.md

Installing Tracks 27

• version 2.2 installation32

• version 2.3 installation33

You’ll need to have Ruby installed, Bundler and a database (MySql, SQLite, PostgreSQL)

• Ruby34

• Bundler35

It is possible to use the ‘official install’ instructions with a pre-build ‘Ruby’ VM from
Bitnami36 or Turnkey. Instructions for installing Tracks into a Bitnami VM are on the book
support web page.

Pre-Built Virtual Machines

My main focus with Tracks is having an application to practice testing on.

I prefer to download a pre-built virtual machine with Tracks already installed and running.

Throughout the case studies you will see references to bitnami because I used a Virtual
Machine from Bitnami, unfortunately Bitnami have discontinued their Tracks VM, leaving
Turnkey as the only pre-built Tracks VM that I know of.

Download a pre-build VM from Turnkey:

• Turnkey Tracks37

Many of the applications, on which I practice my testing, are run from pre-built virtual
machines.

The disadvantage for this case study is that the virtual machines listed on Turnkey will only
have one of the versions. Turnkey does not tend to maintain the older versions and make
them available for download.

The advantage is that you have to do very little to get them working.

You can also easily install the virtual machines to Cloud instances if you want to have them
running separately from your development machine.

32https://github.com/TracksApp/tracks/blob/2.2_branch/doc/installation.textile
33https://github.com/TracksApp/tracks/blob/2.3_branch/doc/installation.md
34https://www.ruby-lang.org/en/
35http://bundler.io/
36https://bitnami.com
37https://www.turnkeylinux.org/tracks

https://github.com/TracksApp/tracks/blob/2.2_branch/doc/installation.textile
https://github.com/TracksApp/tracks/blob/2.3_branch/doc/installation.md
https://www.ruby-lang.org/en/
http://bundler.io/
https://bitnami.com/
https://www.turnkeylinux.org/tracks
https://github.com/TracksApp/tracks/blob/2.2_branch/doc/installation.textile
https://github.com/TracksApp/tracks/blob/2.3_branch/doc/installation.md
https://www.ruby-lang.org/en/
http://bundler.io/
https://bitnami.com/
https://www.turnkeylinux.org/tracks

Installing Tracks 28

Using Virtual Machines

There are a few virtual machine applications that you can use.

• VirtualBox is open source and cross platform
• VMWare is free for some player options but is a commercial product
• Parallels on the Mac is also commercial, I haven’t tried it with the virtual machines
from Bitnami

I tend to use VMWare. On a Mac I use VMWare Fusion, and on Windows VMWare
Workstation.

• vmware.com38

This is a paid project, but I find it more reliable.

The virtual machines that you can download from Bitnami and Turnkey will also work on
VirtualBox.

• virtualbox.org39

VirtualBox is a free virtual machine host.

Turnkey provide a .vmdk file which is a Virtual Disk image which you can use with both
VMWare and VirtualBox.

Turnkey also provide a .ova file which you can open with VirtualBox.

Summary

If we were to actually test the application then we would want to use the official install
routines and have a well configured test environment. Since we are using it to practice, we
can save ourselves some time and use one of the pre-built options.

I prefer to use virtual machines.

38http://www.vmware.com
39https://www.virtualbox.org

http://www.vmware.com/
https://www.virtualbox.org/
http://www.vmware.com/
https://www.virtualbox.org/

A Tour of Tracks
I have created a video to provide a quick walk-through of the Tracks GUI. You can find it on
the book support page video section:

• compendiumdev.co.uk/page/tracksrestsupport40

Why Learn the GUI If We Are Testing the API?

Prior to automating an application, or working with its API, I usually try to use it from the
GUI first.

I find this makes it easier for me to understand the basic functionality and build a mental
model of the application.

I make an exception to this, when the application doesn’t have a GUI at all.

Since this is a mental model of the basic application, I simply use it in a browser with no
additional tools. I will use an HTTP proxy in a later section. Initially I do not use it with
a proxy because I don’t want to become too distracted by the HTTP traffic. I use a proxy
later when I want to understand the application at a more technical level in preparation for
automating it or more technically focused exploratory testing.

Generally I’m doing this to build a model of how the application works and a list of questions
and options that I will need to investigate prior to automating.

I’m just doing a quick tour to identify functionality that I can use via the GUI, and then I’ll
see if I can automate the same functionality using the API. Since we are concentrating on
automating using the API, my notes will ignore the Ajax calls and GUI updating.

40http://compendiumdev.co.uk/page/tracksrestsupport#vtracksoverview

http://compendiumdev.co.uk/page/tracksrestsupport#vtracksoverview
http://compendiumdev.co.uk/page/tracksrestsupport#vtracksoverview

A Tour of Tracks 30

Login

Tracks Login Screen

Login screen to the application, even though every user has their own set of Projects and
TODO items.

This suggests I’ll need to handle some sort of authentication when using the API. Also, if I
were to automate via the API and the GUI at the same time I may be able to share the same
session.

This case study used the (now discontinued) Bitnami pre-built virtual machines, the default
admin user is ‘user’ with the password ‘bitnami’.

A Tour of Tracks 31

Home Screen

Tracks Home Screen

You can see from the Home screen image that a tester has been using the
application, just look at that data!

A Tour of Tracks 32

From the Home screen I can create TODO items (action):

• Projects and Contexts are created automatically when added to an action.
• Tagging provides another way of categorising and organising TODO items.
• TODO items can be dependent on one another.
• Validation rules applied to action,

– action only requires a Description and Context when created,
– action description length is limited to 100 in the GUI,

* this is the only HTML validation, any other validation must be applied by
the server.

The drop down menu suggests that I can ‘star’ actions. Since there is a Starredmenu option.

I can do this on the GUI by clicking the ‘star’ at the side of the action.

We can edit an action in-situ - I assume this is handled via Ajax, which would interesting
to automate from the GUI, but we can ignore this since we are concentrating on the API.

Starred Screen

Starred screen shows starred actions.

I assume that the API will provide a way of retrieving a list of starred actions.

A Tour of Tracks 33

Projects

Tracks Projects Screen

Projects shows a list of project entities.

Can create a Project from this screen.

Clicking on a Project shows a project screen.

A Tour of Tracks 34

Project Edit

Tracks Project Edit Dialog

We can amend the details for a project.

A project can be active, hidden, completed.

A project can be amended after creation to have a description, a default context and tags.

Validation looks as though it is done server-side.

Admin

Tracks Admin Menu

Admin allows editing of user details using Manage Users from the Admin menu.

A Tour of Tracks 35

Tracks Manage Users Screen

An Admin user can Manage and create users.

The ‘admin’ user and the ‘normal’ user have different options exposed here, so the API should
also honour permissions.

Basic Functions to Use and Check in the API

When I test the application I will want to be able to create data in the system to support my
testing. So I would like to be able to:

• Create users
• Create action and project and context for users

Basic functionality in the API that I would want to start writing API code to support testing
would include:

• Login and authenticate
• Action

– Create Action, and have context created automatically
* Create action uses same data validation as GUI

· description is 100 length maximum
· must have a Context

A Tour of Tracks 36

– List Actions in a Context
– ‘Star’ an ‘Action’
– Retrieve list of ‘starred’ Actions
– Edit an action

• Project
– Create Project

* Add action to existing Project
– Amend Project
– Move Project into different status
– Show actions for a Project

• Admin
– Create Users
– User can amend their details (but not another user)

Summary

When an application has a REST API and a GUI, I will use the application via the GUI first to
identify the basic functional scope that might be available and to help me understand what
entities the application manages and what features it offers.

The Tracks REST API
You can find a video overview of the REST API with cURL on the book support page.

• compendiumdev.co.uk/page/tracksrestsupport41

This chapter will provide a short introduction to the terminology and the tools we will
initially use, with links to the documentation and downloads. We cover cURL and the REST
API in much more detail in a later chapter.

What Is a REST API?

‘REST’ stands for ‘Representational State Transfer.

It basically means an API which uses HTTP and uses the ‘HTTP Verbs’ (GET, PUT, POST,
DELETE, etc.) to retrieve data or amend data through the API. Any data retrieved by a GET

would be in the body of the HTTP response, and any data in a PUT or POST request to create
and amend data would be in the body of the HTTP request.

You can find information about REST:

• REST Wikipedia page42

• An overview REST tutorial at restapitutorial.com43

• Roy Fielding44 defined REST in his Ph.D. Thesis45, you can read it as a .pdf46

41http://compendiumdev.co.uk/page/tracksrestsupport#vcurloverview
42https://en.wikipedia.org/wiki/Representational_state_transfer
43http://www.restapitutorial.com/
44https://www.ics.uci.edu/~fielding/
45http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
46https://www.ics.uci.edu/~fielding/pubs/dissertation/fielding_dissertation.pdf

http://compendiumdev.co.uk/page/tracksrestsupport#vcurloverview
https://en.wikipedia.org/wiki/Representational_state_transfer
http://www.restapitutorial.com/
https://www.ics.uci.edu/~fielding/
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
https://www.ics.uci.edu/~fielding/pubs/dissertation/fielding_dissertation.pdf
http://compendiumdev.co.uk/page/tracksrestsupport#vcurloverview
https://en.wikipedia.org/wiki/Representational_state_transfer
http://www.restapitutorial.com/
https://www.ics.uci.edu/~fielding/
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
https://www.ics.uci.edu/~fielding/pubs/dissertation/fielding_dissertation.pdf

The Tracks REST API 38

Tracks REST API Documentation

The Tracks API documentation is in the application itself.

From the ? menu, the REST API Docs menu.

The ‘REST API Docs’ menu

Clicking this takes us to a page with the API documentation.

For easier future reference I make a note of the URL.

URL docs located at /integrations/rest_api

• /integrations/rest_api

API Doc Examples

The API documentation is fairly minimal but it does have some examples - in cURL

• cURL official page47

• cURL Wikipedia description48

One of the things I will want to do is try the examples using cURL, before I try and use the
API in other tools. This way I can learn if the API examples work as documented before

47https://curl.haxx.se/
48https://en.wikipedia.org/wiki/CURL

https://curl.haxx.se/
https://en.wikipedia.org/wiki/CURL
https://curl.haxx.se/
https://en.wikipedia.org/wiki/CURL

The Tracks REST API 39

trying to translate them to another tool. If I can use the API via cURL then I can translate
the examples to any other mechanism later.

From the documentation I can see that:

• System uses Basic HTTP Authentication for the API
– This is different from the main application, which uses a logged on session cookie

• Message content is XML
• GET is used to retrieve data
• DELETE is used to delete data
• PUT is used to amend data
• POST is used to create data

– If we are not familiar with cURL then it is hard to tell from the cURL request
that POST is used

The following endpoints are used:

• /todos.xml

• /todos/ID.xml

• /tickler.xml

• /done.xml

• /hidden.xml

• /calendar.xml

• /contexts.xml

• /contexts/ID.xml

• /contexts/ID/todos.xml

• /projects.xml

• /projects/ID.xml

• /projects/ID/todos.xml

The documentation says that we can also limit returned information to the ‘index’ fields: ID,
created_at, modified_at, completed_at. We do this by adding ?limit_fields=index to the
request.

We can get only active TODOs by adding a parameter ?limit_to_active_todos=1.

The Tracks REST API 40

Omissions in API Documentation

user.xml or users.xml is not mentioned as an endpoint so we might not be able to create or
amend users through the API.

Also I suspect we might be able to have more ‘limit’ type parameter combinations.

General HTTP REST Return Codes

When we issue REST calls, there are a few HTTP return codes we would expect to see:

• 200 (OK) when we GET to retrieve information
• 401 (Unauthorized) when we try to access information without the correct credentials
e.g. without logging in

• 404 (Not Found) when we GET information that does not exist, or POST, PUT DELETE to
an end point that does not exist

• 201 (created) when we use POST to create a new entity
• 409 (Already Exists) we we try to create an existing entity
• 302 (Redirect) when we successfully issue a request, the system may redirect us
somewhere else, e.g POST a login request and be redirected to the user dashboard

Useful information on HTTP Status Codes can be found at:

• httpstatuses.com49

Summary

The Tracks REST API is well documented, with examples of how to trigger it interactively.

Testing an application to ensure that it conforms to the documentation is an important part
of any testing process, in addition to helping us learn and understand the system.

Although the Tracks REST API only uses XML, I do cover JSON processing in a later chapter.

49https://httpstatuses.com/

https://httpstatuses.com/
https://httpstatuses.com/

Using a Proxy to View GUI Traffic
Before I start using cURL and working with the API, I want to first check if the GUI itself
uses the API.

I check by using the GUI in a browser, while all the browser traffic is captured by an HTTP
Proxy.

You can find a video overview of using Tracks through a proxy in the book support page
videos:

• compendiumdev.co.uk/page/tracksrestsupport50

Why?

I do this because, having read the documentation on the API, I now know what an API call
looks like.

If the GUI itself uses the API then when we test or automate through the API we have also
covered a lot of the GUI to server interaction. This would allow us to reduce the automated
coverage that we might want to achieve through GUI automated execution.

If the GUI does not use API calls, then it suggests that the application may have multiple
implementations of the same functionality. Or, possibly more than one route to the same
functionality. Either way, we probably have to continue to test the same functionality through
the GUI, as we do through the API.

In order to make a technically informed decision about the risk we would have to review the
code, rather than rely on information obtained from observing the HTTP traffic.

How?

The easiest HTTP Proxies to use are:
50http://compendiumdev.co.uk/page.php?title=tracksrestsupport#vproxy

http://compendiumdev.co.uk/page.php?title=tracksrestsupport#vproxy
http://compendiumdev.co.uk/page.php?title=tracksrestsupport#vproxy

Using a Proxy to View GUI Traffic 42

• For Windows: Fiddler51

• For Mac: Charles52

Both of these are ‘easiest’ because they hook in to the Operating System HTTP connections
and start listening to traffic by default without any configuration.

You could also use:

• OWASP ZAP Proxy53

• BurpSuite Free Edition54

Both of these are free, and cross platform projects (they require a Java Runtime Edition
installed). You have to do a little extra configuration in the browser to amend the network
connection settings to use a proxy.

• Firefox Network Connection Configuration55

• Chrome Proxy Configuration56

• IE Proxy Configuration57

This ‘how to’ article58 details proxy configuration for different browsers.

Viewing Traffic

Assuming that you have installed the proxy correctly:

• You have a browser installed.
• You have one of the proxy tools installed.
• The proxy tool is running.
• The browser is running.

51http://www.telerik.com/fiddler
52https://www.charlesproxy.com/
53https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project
54https://portswigger.net/burp/download.html
55https://support.mozilla.org/en-US/kb/advanced-panel-settings-in-firefox#w_connection
56https://support.google.com/chrome/answer/96815?hl=en-GB
57http://windows.microsoft.com/en-gb/windows/change-internet-explorer-proxy-server-settings
58http://www.howto-connect.com/windows-10-customize-proxy-server-settings-in-browsers/

http://www.telerik.com/fiddler
https://www.charlesproxy.com/
https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project
https://portswigger.net/burp/download.html
https://support.mozilla.org/en-US/kb/advanced-panel-settings-in-firefox#w_connection
https://support.google.com/chrome/answer/96815?hl=en-GB
http://windows.microsoft.com/en-gb/windows/change-internet-explorer-proxy-server-settings
http://www.howto-connect.com/windows-10-customize-proxy-server-settings-in-browsers/
http://www.telerik.com/fiddler
https://www.charlesproxy.com/
https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project
https://portswigger.net/burp/download.html
https://support.mozilla.org/en-US/kb/advanced-panel-settings-in-firefox#w_connection
https://support.google.com/chrome/answer/96815?hl=en-GB
http://windows.microsoft.com/en-gb/windows/change-internet-explorer-proxy-server-settings
http://www.howto-connect.com/windows-10-customize-proxy-server-settings-in-browsers/

Using a Proxy to View GUI Traffic 43

• The browser is configured to use the proxy.
• When you visit the URL for your tracks installation, the site still loads.

We can then start viewing and analysing the traffic to see if API URLs are used.

Viewing Traffic in Charles Proxy

When I use the application and:

• Login.
• Create an action.
• Create a project.
• Visit different parts of the GUI to see lists of entities.
• Amend an action.
• Amend a project.

Using a Proxy to View GUI Traffic 44

• Delete an action.
• Delete a project.

I can see that only POST and GET are used, and none of the URLs are .xml URLs, so different
parts of the application are being called, the API is not used by the GUI.

Implications

For our purposes of learning how to use the API, it means that we don’t have any examples
in the Proxy of the calls and results used for the API.

Which means that we have to rely on the documentation showing us how to use the API,
rather than having ‘live’ examples taken from the actual application itself.

Summary

Use the GUI, with traffic directed through a proxy, to see if the GUI is using the API.

If the GUI is using the API then we have examples of the API calls being used. This might
help us better understand the API or possibly spot any undocumented functionality. We
might even spot nuanced usage that wasn’t clear from the documentation.

If the GUI is not using the API then we are aware that testing the API in isolation does
not mitigate all the risk associated with server side application functionality. The server side
functionality is triggered in at least two ways: the GUI made HTTP calls and the REST API
calls. This increases the potential scope of testing.

Exploring the Tracks API with cURL
Through a Proxy
Let it be known that I have a ‘thing’ for HTTP proxies.

I like to:

• Have the ability to observe the traffic that I’m using in my testing, both requests and
responses.

• Have a record of the actual messages sent and responses received.
• Look back through these records later when I start writing code to automate the API
to make sure that the requests I send with code are the same as those I sent when
exploring the API.

You can find a video overview of using cURL through a proxy in the book support page
videos:

• compendiumdev.co.uk/page/tracksrestsupport59

Using a Proxy with cURL

• -x <proxydetails> - use a proxy for HTTP requests e.g. e.g. -x localhost:8080

– --proxy <proxydetails> - an alias for -x
• -U <user:password> - set the proxy username and password

If I want to repeat any of the commands I have issued, but send the requests through a proxy,
all I have to do is add the -x and include my proxy details.

Since none of the proxies I have mentioned need a password (Fiddler, Charles, BurpSuite and
OWASP ZAP) I can ignore the -U flag and just use -x

e.g.

59http://compendiumdev.co.uk/page.php?title=tracksrestsupport#vproxy

http://compendiumdev.co.uk/page.php?title=tracksrestsupport#vproxy
http://compendiumdev.co.uk/page.php?title=tracksrestsupport#vproxy

Exploring the Tracks API with cURL Through a Proxy 46

curl -x localhost:8080 \

-u username:p4ssw0rd -H "Content-Type: text/xml" \

http://192.168.17.129/contexts.xml

For Debugging

If I know the cURL commands work successfully, and I capture the actual requests sent when
I issue the cURL commands, then I have a baseline set of ‘good’ requests.

If I then encounter problems when I automate, or use a REST client, then I can compare the
messages sent by the new tools with the original cURL message requests.

If there are any differences between the new requests and those sent by cURL then the
differences are a good place to start looking for a source of any problems.

The cURL messages are likely to be the most minimal messages that I send, i.e. fewer headers
and request paraphernalia so they can act as a very simple baseline.

For Exploration

cURL can feel a little clumsy to repeat messages and amend the content of longer messages.

One benefit of playing them through a proxy is that we can then use the replay and edit
functionality in the proxy to resend requests, and amend the requests to explore different
conditions.

For Simple Scope Coverage

Some of the proxy tools, e.g. BurpSuite and OWASP ZAP, have ‘fuzzers’. I can use a Fuzzer
to iterate over values, in much the same way as I fed a file of values into the commands from
Bash or the command line.

I can do the same from the ‘fuzzers’ in the Proxy tool GUI. I find it easier to use the Fuzzer
GUI than use the command line to create lots of data.

Summary

Having the ability to feed tools through HTTP debug proxies offers us enormous flexibility
in our testing.

Exploring the Tracks API with cURL Through a Proxy 47

We can store the requests and responses for future review or support evidence of testing.

We can resend edited requests from the proxy GUI as well as from cURL, this can make it
easier to experiment with subtle tweaks for more in-depth testing or just until we learn how
to make the request work.

We can review the requests and responses in an environment designed to render them, often
with pretty printing and formatting.

The increased ability to observe, interrogate and manipulate the requests will increase your
understanding of the API and flexibility in how you test the API.

cURL Summary
The official cURL web site - curl.haxx.se/docs60

For quotes - remember " on Unix means allow expansion of variables, so use ' on Unix and
" on Windows.

Examples:

• curl <url> - GET the URL
• curl -X <verb> <url> - issue the verb request to the URL e.g. GET, PUT, POST etc.
• curl --version - see what version you are using
• curl "eviltester.com?p1=a&p2=b" - GET a URL with parameters

Options:

• -v for verbose mode to see response
• -i for ‘include’ to see response headers
• --trace <filename> - output full message as a HEX and ASCII representation to the
<filename>

• --trace-ascii <filename> - output full message trace as an ASCII representation to
the <filename>

• -b <set-cookie-line> - sends the cookies e.g. N1=V1;N2=V2
• -b <filename> - when no = the file is read as cookies
• -c <filename> - writes any cookies to this cookie jar file
• -H "<header>" - sets the header e.g. -H "Content-Type: application/json"

• -x <proxydetails> - use a proxy for HTTP requests e.g. localhost:8080
• --proxy <proxydetails> - use a proxy for HTTP requests e.g. localhost:8080
• -U <user:password> - set the proxy username and password
• -A <user-agent> - set the user agent
• -o <file> - send console output to a file

60http://curl.haxx.se/docs/

http://curl.haxx.se/docs/
http://curl.haxx.se/docs/

cURL Summary 49

For PUT and POST payloads:

• -d <data> - send the data as form URL encoded
• -d @<filename> - sends data from a file (also --data etc.)
• -F "name=@<filename>;type=text/plain" - multi-part form data
• -d "name=value"

With -d options the Content Type is automatically set to:

• application/x-www-form-urlencoded

With -F options the Content Type is automatically set to:

• multipart/form-data

To split commands across multiple line use \ on Unix and ^ on Windows.

e.g. for Unix:

curl -u username:p4ssw0rd -H "Content-Type: text/xml" \

http://192.168.17.129/contexts.xml

and for Windows:

curl -u username:p4ssw0rd -H "Content-Type: text/xml" ^

http://192.168.17.129/contexts.xml

Exploring Tracks API with Postman
REST Client
There are many REST Client GUIs available. I primarily use Postman.

• getpostman.com61

Postman is free and parts are Open Source. It was originally a Chrome Application and then
converted into a Desktop Application.

This chapter will deal with the Desktop Application. Chrome Applications were deprecated
in mid 2016 and will no longer be supported. I have moved the Chrome Application coverage
to an appendix.

You can find a video overview of the Postman GUI on the book support page.

• compendiumdev.co.uk/page/tracksrestsupport62

The GUI

The Postman GUI is simple to use.

61https://www.getpostman.com/
62http://compendiumdev.co.uk/page/tracksrestsupport#vpostmangui

https://www.getpostman.com/
http://compendiumdev.co.uk/page/tracksrestsupport#vpostmangui
https://www.getpostman.com/
http://compendiumdev.co.uk/page/tracksrestsupport#vpostmangui

Exploring Tracks API with Postman REST Client 51

Postman GUI

• Central part of the screen is where we issue requests.
• Left hand side bar is a set of ‘collections’ of saved requests, and history of previous
requests.

Issue Requests

We issue requests by amending the details in the main GUI.

Exploring Tracks API with Postman REST Client 52

Issue a Request with Postman

We can change:

• The HTTP verb using the drop down. The screenshot shows a GET request but we can
change that to any of the HTTP verbs e.g. POST, DELETE, PUT etc.

• The URL. The screenshot shows http://eviltester.com.
• The URL parameters by using the Params button, as this opens an easy way to edit any
URL parameters.

• The Authorization used for Basic Auth, OAuth, etc.
• The Headers and add any header information we need.
• The Body if we are issuing a verb that allows body text e.g. POST.

Also:

• The Send button will issue the request.
• The Save button allows you to save the request to a Collection, use Save As if you are
editing a request from a Collection.

After issuing a request the results will be shown in the Body tab and you can:

Exploring Tracks API with Postman REST Client 53

• See the HTTP Status code (in the above screenshot it was a 200 OK).
• See the time it took to receive the response.
• See the size of the response.
• View the message response as raw text.
• Pretty print the response.
• Change the type that Postman has rendered the response e.g. HTML, JSON etc. to use a
different Pretty Print view.

You can also view any cookies issued, and the headers used.

What you can’t see is the actual request sent - which is why I like to configure Postman to
use a proxy server. (see explanation later)

The GUI is pretty straight forward for sending basic requests. If you explore you should
figure it out. Assuming of course that you know the semantics of the HTTP requests you are
sending.

Postman Collections

When you have a request that works in Postman you can save it to a Collection for re-use.

Postman can ‘sync’ Collections of requests to all devices. I find this useful since I often switch
between working on a Windows machine, and on a Mac. Postman will sync the changes I
made to the Collection on one machine with the other so I always have an up to date set of
messages to use.

If you create a Postman account then you can share your Collections with others.

You can find the Postman Collection for this case study shared as:

• getpostman.com/collections/b9e81b009bfd21ec5e8363

I created a ‘bit.ly’ link in case you want to type it manually:

• bit.ly/2iPaxgj64

63https://www.getpostman.com/collections/b9e81b009bfd21ec5e83
64http://bit.ly/2iPaxgj

https://www.getpostman.com/collections/b9e81b009bfd21ec5e83
http://bit.ly/2iPaxgj
https://www.getpostman.com/collections/b9e81b009bfd21ec5e83
http://bit.ly/2iPaxgj

Exploring Tracks API with Postman REST Client 54

To use the Collection in Postman you would import it. Either use the “import” button or the
drop down menu item on the “Collection” menu.

You can import the Collection using the link above with the “Import From Link” option, or
from the file in the source code repository in the \postman folder.

Requests in Collections can be organized into folders to make them easier to use.

Environment Variables

Environment variables are very useful because they allow you to have a saved Collection of
responses which you can send to multiple environments.

If I’m running Tracks in a virtual machine then the IP address of the virtual machine might
change and I don’t want to have to amend every request before I send it to use the most up
to date IP address. Instead I would use environment variables in the request:

e.g. I would want to GET:

• http://{{url}}/contexts.xml rather than
• http://129.128.1.16/contexts.xml

The Environment variables GUI section are in the top right of the main builder part of the
GUI:

Environment Management Section

This consists of:

• A drop down showing the list of environments.
• An ‘eye’ which shows the values of the environment variables.
• A settings ‘cog’ where you can manage the environments.

Exploring Tracks API with Postman REST Client 55

An environment is essentially a named set of key value pairs.

In order to use the Collection for this case study you would need to create an environment
which had a url key value pair:

Environment Editing

Whatever key you create in the environment section, you can use in the requests with
{{key}}.

e.g. if the key name was url you would write {{url}} in the request and it would be replaced
by the value in the chosen environment.

If your requests fail, or you receive a result you don’t expect, then make sure you check the
environment variables exist and that they are set correctly.

Authentication

The Authentication tab lets you set a username and password for the authentication scheme
used by the application.

You might need to amend this for the requests in the case study Collection. When you do,
make sure you press the Update Request button prior to sending the request.

Using Postman Through a Proxy

To use Postman through a proxy, we have to start the application with a different command
line argument.

Postman.exe --proxy-server=localhost:8888

Exploring Tracks API with Postman REST Client 56

You can find the location of Postman by looking at the shortcut created by the Postman
installer.

After Postman has installed on Windows, I create a copy of the shortcut, edit the properties
of the copied shortcut to add the command line arguments in the Target field.

Postman Proxy Properties

You can find a video overview of using Postman through a proxy on the book support page.

• compendiumdev.co.uk/page/tracksrestsupport65

Proxy on Mac

To start a GUI application on Mac from the command line, you could use the open command
from a terminal:

open /Applications/Postman.app --args --proxy-server=localhost:8888

The above command uses:
65http://compendiumdev.co.uk/page/tracksrestsupport#vpostmanproxy

http://compendiumdev.co.uk/page/tracksrestsupport#vpostmanproxy
http://compendiumdev.co.uk/page/tracksrestsupport#vpostmanproxy

Exploring Tracks API with Postman REST Client 57

• open to start the application
• /Applications/Postman.app which is the path of the Postman application
• --args to tell the open command to accept command line arguments
• --proxy-server=localhost:8888 the command line argument to set the proxy.

You can find other options for starting Mac applications from command line on this
Superuser.com answer superuser.com/questions/1675066

Recreate cURL Requests in Postman

To start using Postman, the easiest thing to do is re-use the requests that you have been
issuing from cURL.

Since you already know that the cURL request works, you can compare the cURL request
with the Postman request to debug it.

If you are using a proxy then you can compare the sent request from both cURL and Postman,
in detail, to spot any differences.

Summary

This chapter concentrated on the basics of the Postman desktop client and provided a simple
overview of the GUI.

I fully expect this chapter to go out of date quickly, although I expect the basic functionality
listed here to remain in Postman with much the same GUI.

The GUI isn’t complicated, and if you experiment with it, you should be up and running with
the basics very quickly.

To use the case study Collection, remember to create an ‘environment’ with a url and
remember to change the Basic Auth values prior to sending a request. Or create an Admin
user in your Tracks system with the username user which has a password of bitnami.

66https://superuser.com/questions/16750/how-can-i-run-an-application-with-command-line-arguments-in-mac-os

https://superuser.com/questions/16750/how-can-i-run-an-application-with-command-line-arguments-in-mac-os
https://superuser.com/questions/16750/how-can-i-run-an-application-with-command-line-arguments-in-mac-os

Starting to Automate
We have explored the API with cURL, proxies and Postman. Now we have a pretty good
idea of how the API works and the type of responses it returns. We can start to think about
automating it.

Why Explore First?

Part of the reason for doing the exploratory learning work first was to make sure we had
several baselines to refer back to.

• cURL basic requests.
• Examples of the ‘real’ cURL requests and responses saved from the proxy.
• Saved requests in Postman with which we can quickly experiment.

Without the previous work, if something goes wrong when we automate we don’t know if:

• We haven’t understood the API.
• The API is broken.
• Our request is wrong.
• We are not receiving the correct responses.

But now we have evidence to compare back to if anything goes wrong. We can use the
previous exploratory tools and approaches when we want to do something new in the GUI.

We have also built up basic coverage scenarios that we want to automate and now have a bit
of a plan.

Choosing a Java Library

REST is essentially HTTP, so we could just use an HTTP library.

Starting to Automate 59

Using an HTTP library would be analogous to using cURL or the HTTP proxy. We gain a lot
of low level configurable control, but it is a little slower and we work at the level of HTTP
abstractions rather than REST requests.

Postman gives us a bit more of an abstraction on top of HTTP, since we can parse the
responses more easily, but it is essentially an HTTP tool. The use of Collections is where
the REST abstractions really start to come into play because we can organise the requests
into a higher level set of categories.

There are always options when choosing a library for the programming language you will
automate in.

For example in Java, a quick web search provided me with the following options:

• unirest.io67

• resty68

• jersey69

• JavaLite70

• REST Assured71

• OkHTTP72

• Apache HttpClient73

I chose to use REST Assured because I’ve used it before.

Although, really I’m cheating, because REST Assured uses Groovy, rather than Java, so adds
some additional dependencies to the project that I don’t really need.

But I have used REST Assured on a number of projects and it is pretty simple use. REST
Assured also supplies some useful classes for parsing responses in XML and JSON.

In summary then, my decision to use the library is a pragmatic one based on previous
experience. Not because it is the ‘best’ library. Not because I’ve evaluated them all and chosen
the most suitable for the project. Instead, simply because I know I can create something
quickly with it.

67http://unirest.io/java.html
68https://beders.github.io/Resty/Resty/Overview.html
69https://jersey.java.net/
70http://javalite.io/http
71https://github.com/rest-assured/rest-assured
72http://square.github.io/okhttp/
73https://hc.apache.org/

http://unirest.io/java.html
https://beders.github.io/Resty/Resty/Overview.html
https://jersey.java.net/
http://javalite.io/http
https://github.com/rest-assured/rest-assured
http://square.github.io/okhttp/
https://hc.apache.org/
http://unirest.io/java.html
https://beders.github.io/Resty/Resty/Overview.html
https://jersey.java.net/
http://javalite.io/http
https://github.com/rest-assured/rest-assured
http://square.github.io/okhttp/
https://hc.apache.org/

Starting to Automate 60

REST Assured Overview

REST Assured describes itself as a “Java DSL for simplifying testing of REST based services”.
I think ‘DSL’ is pushing it a bit far.

I think of REST Assured as a library, with a fluent interface, for automating REST services
and HTTP applications easily.

All the examples for using REST Assured, use it as a set of static imports, which gives it
the impression of looking more like a ‘DSL’ than a library.

I don’t particularly like using lots of static imports, but since that is the convention for using
REST Assured, that is what I will do.

You can find very good instructions for using REST Assured on the web site so I’m mainly
going to describe how I used it, rather than all the features it provides.

The way that I use REST Assured is slightly different than the documentation describes and,
I suspect, different from how many people use it. My usage differs because I don’t really use
the assertion mechanisms that REST Assured provides, or its BDD approach in the @Test

methods.

Installation

Installation is very simple for Maven based projects - add the rest-assured dependency in
the pom.xml.

• github.com/rest-assured/rest-assured/wiki/GettingStarted74

<dependency>

<groupId>io.rest-assured</groupId>

<artifactId>rest-assured</artifactId>

<version>3.0.1</version>

</dependency>

Usage

I can use REST Assured to write @Test methods like the following:

74https://github.com/rest-assured/rest-assured/wiki/GettingStarted

https://github.com/rest-assured/rest-assured/wiki/GettingStarted
https://github.com/rest-assured/rest-assured/wiki/GettingStarted

Starting to Automate 61

@Test

public void aUserCanNotAccessIfNoBasicAuthHeaderUsingRestAssured(){

given().

contentType("text/xml").

expect().

statusCode(401).

when().

get("http://192.168.17.129/todos.xml");

}

Many older REST Assured examples are written in the given, expect, when style. And that
is what I’m used to because I’ve used REST Assured before.

The interface for using REST Assured is very flexible and now the recommended style seems
to be given, when, then, so I could equally have written:

@Test

public void aUserCanNotAccessIfNoBasicAuthHeaderUsingGivenWhenThen(){

given().

contentType("text/xml").

when().

get("http://192.168.17.129/todos.xml").

then().

statusCode(401);

}

You can see plenty of usage examples on the REST Assured web site:

• github.com/rest-assured/rest-assured/wiki/Usage75

I tend not to worry about which of those two conventions to use because I rarely use the
REST Assured code in my actual @Test methods.

I use the REST Assured code in my lower level abstractions.

75https://github.com/rest-assured/rest-assured/wiki/Usage

https://github.com/rest-assured/rest-assured/wiki/Usage
https://github.com/rest-assured/rest-assured/wiki/Usage

Starting to Automate 62

Abstractions

I try to write code that is readable and is robust in the face of change.

It is possible to view the REST Assured library itself as providing a set of abstractions
including:

• HTTP calls,
• Gherkin Given, When, Then,
• Assertions - e.g. in the form of expect(),
• JSON parsing,
• XML parsing,
• …

Actually, that is quite a lot of abstractions.

It would be tempting to write all of my @Test methods using REST Assured, because then I
get assertions, given, when & then, for free, and I don’t have to worry about JSON parsing
and … etc.

However, if I have @Testmethods which use the HTTP level abstractions then they will have
to change when the API changes e.g. they call specific end points and use specific parameters.
That approach would be suitable when I am specifically testing the structure of the API.

For example, if I have some end points on the API, and I want to check that each end point
works, then this might be a valid abstraction level. I can mitigate some code changes by
making endpoint URLs String constants.

Also, if I want to use the API to functionally test the application, and will be making multiple
API calls in sequence, then I need to work at a level of abstraction above the HTTP endpoint
calls.

In reality I want tests that look a little more like this:

Starting to Automate 63

@Test

public void aUserCanDeleteAProject(){

TracksApi api = new TracksApi(TestEnvDefaults.getTestEnv());

api.createProject("A New Project" +

new RandomDataGenerator().randomWord());

Assert.assertEquals(201,

api.getLastResponse().getStatusCode());

String projectId = new TracksResponseProcessor(

api.getLastResponse())

.getIdFromLocation();

// check we can get it

api.getProject(projectId);

Assert.assertEquals(200,

api.getLastResponse().getStatusCode());

// check we can delete it

api.deleteProject(projectId);

Assert.assertEquals(200,

api.getLastResponse().getStatusCode());

// check it has been deleted

api.getProject(projectId);

Assert.assertEquals(404,

api.getLastResponse().getStatusCode());

}

The above @Testmethod does use the REST Assured abstractions in the code - the Response
class from REST Assured is used.

I have created a level of abstraction that maps on to the documented API i.e. TracksApi
and this has methods which allow me to call the API and receive responses. Sometimes the
responses are HTTP responses, sometimes they are domain objects. I always have access to
the physical HTTP response via the getLastResponse method.

I assert in the @Test, but I don’t use the REST Assured assertion mechanism, I use the
JUnit assertions because these maintain a separation between the ‘use’ of the API, and the
‘checking’ or ‘assertion’ of the API results.

This means that if the physical structure of the API changes then my @Test code does not
have to change, since the functionality that I’m using the API to test does not change. I will

Starting to Automate 64

always be able to use the API to create, get, and delete Projects. The status code returned
might change, but I doubt it.

The end point might change, and that won’t impact my @Test, but it will requireme to change
other parts of the abstraction code. The data used to create the Project might change, but
that probably won’t require me to change the @Test since I don’t really care what the details
of the Project are, just that one is created.

This @Test isn’t perfect.

• I could refactor this so that instead of sending the createProject method a ‘name’, I
send it a Project.newRandomProject().

• If the API were larger then having a single TracksApi with a long series of methods
might not be readable or manageable, I might want to logically organise the API:
api.projects().get(id) or api.projects().delete(id) etc.

But I don’t worry about that now because I can amend the API abstractions over time.

Other Examples of REST Assured

I wanted to compare my use of REST Assured with other people so I used the search facility
on github.com76 to look for Java projects using the rest-assured library.

• GitHub search for Java projects using rest-assured77

I found the following projects which all use REST Assured directly in their @Test methods:

• github.com/testvagrant/RESTTests_RestAssured78

• github.com/OnBoardInformatics/WebMavenRestAssured79

• github.com/GSMADeveloper/RCS-REST-Tests80

– This GSMADeveloper project is interesting because it imports the top level
RestAssured class, rather than statically importing the given class. I found a
few other personal projects doing this but haven’t listed them as I thought one
example would suffice.

76https://github.com
77https://github.com/search?l=Java&q=rest-assured&type=Repositories&utf8=%E2%9C%93
78https://github.com/testvagrant/RESTTests_RestAssured
79https://github.com/OnBoardInformatics/WebMavenRestAssured
80https://github.com/GSMADeveloper/RCS-REST-Tests

https://github.com/
https://github.com/search?l=Java&q=rest-assured&type=Repositories&utf8=%E2%9C%93
https://github.com/testvagrant/RESTTests_RestAssured
https://github.com/OnBoardInformatics/WebMavenRestAssured
https://github.com/GSMADeveloper/RCS-REST-Tests
https://github.com/
https://github.com/search?l=Java&q=rest-assured&type=Repositories&utf8=%E2%9C%93
https://github.com/testvagrant/RESTTests_RestAssured
https://github.com/OnBoardInformatics/WebMavenRestAssured
https://github.com/GSMADeveloper/RCS-REST-Tests

Starting to Automate 65

– I also have some examples using this style in the later JSON and XML processing
chapter.

I found the following projects which adopted a similar approach to that used in this case study
i.e. the use of abstractions on top of REST Assured which are used in the @Test methods:

• github.com/moolya-testing/rest-assured81

The basic criteria for choosing to list the projects here was that they looked like they were
written by companies rather than individuals and they had enough code to make reading
them interesting. I haven’t included them because I think they are exemplars of how to write
automated code. Their inclusion does not mean that I endorse them in any way. But I think
it is useful to have examples to read.

REST Assured Related Reading

A quick web search revealed the following resources, if you want to learn more about REST
Assured:

• Bas Djkstra’s Open Source REST Assured Workshop82

– Bas has open sourced a workshop that has basic REST Assured functionality for
pre-emptive Basic Auth, REST Assured assertions, Oath2, POST, GET, URL Path
parameters.

• Joe Colantonio has a few REST Assured blog posts written in a tutorial format:
– Part 1 Getting Started83

– Part 2 GET84

– part 3 POST85

• Code examples on programcreek for REST Assured86

• Mark Winteringham has some REST Assured example code in his API Framework
project on GitHub87

81https://github.com/moolya-testing/rest-assured
82http://www.ontestautomation.com/open-sourcing-my-workshop-an-experiment/
83https://www.joecolantonio.com/2014/02/07/rest-testing-with-java-getting-started-with-rest-assured/
84https://www.joecolantonio.com/2014/02/26/rest-testing-with-java-part-two-getting-started-with-rest-assured/
85https://www.joecolantonio.com/2014/04/24/rest-assured-how-to-post-a-json-request/
86http://www.programcreek.com/java-api-examples/index.php?api=com.jayway.restassured.RestAssured
87https://github.com/mwinteringham/api-framework

https://github.com/moolya-testing/rest-assured
http://www.ontestautomation.com/open-sourcing-my-workshop-an-experiment/
https://www.joecolantonio.com/2014/02/07/rest-testing-with-java-getting-started-with-rest-assured/
https://www.joecolantonio.com/2014/02/26/rest-testing-with-java-part-two-getting-started-with-rest-assured/
https://www.joecolantonio.com/2014/04/24/rest-assured-how-to-post-a-json-request/
http://www.programcreek.com/java-api-examples/index.php?api=com.jayway.restassured.RestAssured
https://github.com/mwinteringham/api-framework
https://github.com/mwinteringham/api-framework
https://github.com/moolya-testing/rest-assured
http://www.ontestautomation.com/open-sourcing-my-workshop-an-experiment/
https://www.joecolantonio.com/2014/02/07/rest-testing-with-java-getting-started-with-rest-assured/
https://www.joecolantonio.com/2014/02/26/rest-testing-with-java-part-two-getting-started-with-rest-assured/
https://www.joecolantonio.com/2014/04/24/rest-assured-how-to-post-a-json-request/
http://www.programcreek.com/java-api-examples/index.php?api=com.jayway.restassured.RestAssured
https://github.com/mwinteringham/api-framework

Starting to Automate 66

Summary

Try to explore the API interactively before you automate. This allows you to learn more
about the API, and often allows you to experiment very quickly.

Prior to committing strategically to a library or tool, it is worth spending some time tactically
automating the API to learn more and identify specific risk areas or problematic areas of the
API.

As you automate, do keep thinking about the structure of the code and the abstractions you
are using tomake sure that you continually refactor to code that is maintainable and readable.

About the Author
Alan Richardson has more than twenty years of professional IT experience, working as a
programmer, and at every level of the testing hierarchy from Tester through Head of Testing.
Author of the books “Dear Evil Tester”, “Selenium Simplified” and “Java For Testers”. Alan
has also created on-line training courses to help people learn Technical Web Testing and
Selenium WebDriver with Java.

Alan works as an independent consultant, helping companies improve their automating and
use of agile, and exploratory technical testing.

You can find Alan’s writing and training videos on:

• SeleniumSimplified.com88,
• EvilTester.com89,
• JavaForTesters.com90, and
• CompendiumDev.co.uk91.

Alan posts information and videos regularly to social media on:

• Twitter - @eviltester92

• Instagram - @eviltester93

• Linkedin - @eviltester94

• Youtube - EvilTesterVideos95

• Pinterest - @eviltester96

To contact Alan for custom training or consultancy, visit:

• compendiumdev.co.uk/contact97

88http://SeleniumSimplified.com
89http://EvilTester.com
90http://javafortesters.com
91http://compendiumdev.co.uk
92https://twitter.com/eviltester
93https://www.instagram.com/eviltester
94https://uk.linkedin.com/in/eviltester
95https://www.youtube.com/user/EviltesterVideos
96https://uk.pinterest.com/eviltester/
97http://compendiumdev.co.uk/page/contact_us

http://seleniumsimplified.com/
http://eviltester.com/
http://javafortesters.com/
http://compendiumdev.co.uk/
https://twitter.com/eviltester
https://www.instagram.com/eviltester
https://uk.linkedin.com/in/eviltester
https://www.youtube.com/user/EviltesterVideos
https://uk.pinterest.com/eviltester/
http://compendiumdev.co.uk/page/contact_us
http://seleniumsimplified.com/
http://eviltester.com/
http://javafortesters.com/
http://compendiumdev.co.uk/
https://twitter.com/eviltester
https://www.instagram.com/eviltester
https://uk.linkedin.com/in/eviltester
https://www.youtube.com/user/EviltesterVideos
https://uk.pinterest.com/eviltester/
http://compendiumdev.co.uk/page/contact_us

Thanks for Reading This Sample
Thanks for reading this sample of my “Automating and Testing REST APIs” book.

The sample has the general introductory information to help you get started with testing
REST APIs, specifically the Tracks API.

And the full book has so much more.

The full book is a case study so it contains:

• working code
• practical examples
• thought processes
• step by step analysis

All against a real system.

We have full analysis of exploring the Tracks API with cURL. Showing cURL commands for
many different HTTP REST calls.

Then we build on that to figure out how to automate the Tracks API.

We have to overcome the hurdle that the Tracks API does not support the creation of users.
So how do we automate it?

I explain the concept of APP as API with code to illustrate the concept in detail.

Full explanations of three different random data creation strategies:

• one very simple
• one that relies on scraping data from a live site
• one that uses pure code to generate data

I explain how to use REST Assured so if you want to use that in production you’ll have
enough information to go quite far.

I also explain the unconventional way in which I use it for strategically automating with
abstraction layers to make the test code maintainable.

Thanks for Reading This Sample 69

I also provide explanations of what I would do next - what refactoring to undertake.

And at that point in the book you should have enough information to carry that forward as
an exercise so you can really build on the information in the book in a very practical way by
taking the code forward.

The code and coverage in this case study was created for workshops where I taught how to
test a REST API. I pulled on all my previous REST API testing experience, and I learned a
bunch of stuff as I conducted the training, and I’ve tried to explain it fully in this book.

I’m sure you’ll learn something you didn’t know before, and I hope you’re eager enough to
move forward with your API testing that you’ll pick up the full copy of the text.

• compendiumdev.co.uk/page/tracksrestapibook98

98http://compendiumdev.co.uk/page/tracksrestapibook

http://compendiumdev.co.uk/page/tracksrestapibook
http://compendiumdev.co.uk/page/tracksrestapibook

	Table of Contents
	Thanks for Reading This Sample
	Introduction
	Introduction to APIs
	What Is a Web Application?
	Google Is an Example of a Web Application
	What Is an API?
	What Is an HTTP Request?
	What Is a URL?
	What Are HTTP Verbs?
	What Is an HTTP Response?
	What Is an HTTP Status Code?
	What Are Payloads?
	What Is JSON?
	What Is XML?
	What Are HTTP Headers?
	What Is Authentication?
	What Is REST?
	What Tools Are Used for Accessing an API?
	Example APIs
	Recommended Reading
	Summary

	Introducing Tracks Case Study
	Support Page
	How to Use This Case Study
	Source Code Location
	Case Study Contents Overview
	Why Test Tracks?
	What Is Tracks and GTD?

	Installing Tracks
	Official Tracks Install
	Pre-Built Virtual Machines
	Using Virtual Machines
	Summary

	A Tour of Tracks
	Why Learn the GUI If We Are Testing the API?
	Login
	Home Screen
	Starred Screen
	Projects
	Admin
	Basic Functions to Use and Check in the API
	Summary

	The Tracks REST API
	What Is a REST API?
	Tracks REST API Documentation
	API Doc Examples
	General HTTP REST Return Codes
	Summary

	Using a Proxy to View GUI Traffic
	Why?
	How?
	Viewing Traffic
	Implications
	Summary

	Exploring the Tracks API with cURL Through a Proxy
	Using a Proxy with cURL
	For Debugging
	For Exploration
	For Simple Scope Coverage
	Summary

	cURL Summary
	Exploring Tracks API with Postman REST Client
	The GUI
	Issue Requests
	Postman Collections
	Environment Variables
	Authentication
	Using Postman Through a Proxy
	Recreate cURL Requests in Postman
	Summary

	Starting to Automate
	Why Explore First?
	Choosing a Java Library
	REST Assured Overview
	REST Assured Related Reading
	Summary

	About the Author
	Thanks for Reading This Sample

