

Tap Into Mobile Application
Testing

Jonathan Kohl

This book is for sale at http://leanpub.com/testmobileapps

This version was published on 2017-05-02

ISBN 978-0-9959823-2-1

This is a Leanpub book. Leanpub empowers authors and
publishers with the Lean Publishing process. Lean
Publishing is the act of publishing an in-progress ebook
using lightweight tools and many iterations to get reader
feedback, pivot until you have the right book and build
traction once you do.

© 2012 - 2017 Jonathan Kohl

http://leanpub.com/testmobileapps
http://leanpub.com/
http://leanpub.com/manifesto
http://leanpub.com/manifesto

Tweet This Book!
Please help Jonathan Kohl by spreading the word about
this book on Twitter!

The suggested hashtag for this book is #testmobileapps.

Find out what other people are saying about the book by
clicking on this link to search for this hashtag on Twitter:

https://twitter.com/search?q=#testmobileapps

http://twitter.com
https://twitter.com/search?q=%23testmobileapps
https://twitter.com/search?q=%23testmobileapps

For my wife Elizabeth. Thanks for your support and
pushing me to write this book in the first place.

Contents

Chapter 1: Get Started Now 1

Chapter 1: Get Started
Now

“How do you start testing software? You just
start using it.” — Javan Gargus

If you’re new to testing, or to testing on mobile devices, it
can be a bit nervewracking at first. Youmay have questions
like:

• What do I do?
• What information do I report?
• What if I don’t find any problems?

Don’t worry. You’ll learn plenty of approaches to help you
answer each of these questions as you work through this
book. Especially don’t worry about the third question. If
you follow along and try some of the approaches I write
about, you will find problems.

When I first started out in software development, my
colleague Javan and I worked closely together as testers and
became good friends. At a conference, we met a customer
of the software we had tested. She remarked on how robust
and reliable the software was, that we must be highly

Chapter 1: Get Started Now 2

skilled testers and that she appreciated our work. She
used other software from other vendors that would crash,
perform poorly, freeze up, and was difficult to use.

She was interested in what we did differently and how we
started new projects. Javan shrugged and said, “We just
start using it.”

Javan had a good point, but testers do more than use the
software. They use it systematically, observe carefully and
evaluate bravely. Expanding on how testers use it, you
must:

• Use the software systematically,
• Observe what is going on carefully,
• Evaluate its effectiveness of it bravely,
• Investigate anything that piques your curiosity,
• Record and report anything interesting.

Still concerned about whether you’ll find bugs? Don’t be.
If you’re systematic and observant, youwill find important
problems.

The difference between a great tester like Javan and testers
who provide little or no value to a project is in how the
great tester uses the software, what he pays attention to,
how he evaluates it, and what he reports. To help you to
be a great mobile tester, much of this book is dedicated to
addressing these concepts. Here are some of the approaches
Javan and I used.

Chapter 1: Get Started Now 3

Gather User Information

To start off, we found as much information about our
end users as we possibly could. Then, we tried to use
the software the way they would and we evaluated the
software to gather the following kinds of information:

• What goals or tasks are customers trying to achieve
with this software?

• How do customers use computers and other soft-
ware?

• Under what conditions do customers use the soft-
ware?

• What happens when something goes wrong?

If you’remissing some of this information, you can still rely
on one user’s information: yours. That’s right, you. You are
a user of software, and if you are reading this, then you
probably have an idea of what mobile devices are. If you
don’t have much information to go on, then use what you
know or don’t know.

While we are all unique, we tend to behave in similar ways.
(We all may be unique, individual snowflakes, but we still
act like snowflakes.) That means there are people just like
you who will use the software you’re testing in much the
same way. They’ll get confused about the same things you
get confused about. They’ll struggle with the same parts

Chapter 1: Get Started Now 4

of the app that you struggle with. They’ll enjoy the same
features and aspects that you enjoy.

So, if you can’t get all the information I mention above—
or at least not right now (please try to get it at some point
while you test)—then just start using the software. Be aware
and systematic. Pay attention, and watch for anything out
of the ordinary.

Start Testing

Now, grab your mobile device and start testing. Do you
have an app that requires your attention? Or maybe you’re
just learning about this topic and you don’t have a pro-
grammer or team depending on you. If that’s the case, take
your device and pick an app—any app, even something
built in like the camera or maps app—and start using it.

As you use it, think like an investigator. Note any interest-
ing information. Grab paper and pen, or use a note-taking
app to record what you see. Try answering the following
questions:

• What are your first impressions?
• Is anything confusing?
• Does the app feel slow?
• Where are you testing it?
• What hardware device, OS version and network type
are you using?

Chapter 1: Get Started Now 5

• What’s the weather like? (No, this isn’t a joke. You’ll
learn why in the next chapter.)

• Does the app crash or freeze? (If so, note the specific
steps you need to take to repeat that behavior.)

What Are “Bugs” Anyway?

We tend to consider crashes, app freeze-ups wrong an-
swers, and incorrect calculations as bugs. These are the
issues that programmers are interested in right now. How-
ever, any of the other questions above can lead to discov-
ering important bugs if you take the time to investigate.

I get my definition of a bug from James Bach: “A bug is
something that bugs someone who matters.” If it bugs you,
then log it. You, as a tester, are someone who matters.

Reporting qualitative information is especially important.
If an app is confusing or frustrating, it may have serious
design flaws that need to be addressed. Mobile apps, more
so than any other kind of app, depend on usability and
performance.Why? Because that is what consumers expect
and demand. If an app is hard to use or if it is too slow, it
will get deleted from devices and a user will move on to a
competing app.

The choice to delete an app from a device is usually a
qualitative one. It may be functionally correct—that is, it
meets a specification—but how the user feels about the
app is important. Mobile apps are easy to install and even

Chapter 1: Get Started Now 6

easier to delete. That’s why it’s important to note how you
feel when you are using the app. Those feelings have an
enormous influence on whether an app is used or not.

I want you to remember the following:

NEVER, UNDERANYCIRCUMSTANCES, BLAMEYOUR-
SELF FOR FEELING CONFUSED BY THE TECHNOL-
OGY!

Phew. Sorry for shouting. Let me repeat that a little more
calmly:

Never, under any circumstances, blame yourself for
feeling confused by the technology!

Got it?

Wait, what’s that? You don’t believe me?

Mobile devices aren’t easy to use. They are smaller than
non-mobile devices, harder to type with, and we use them
in all sorts of weird situations and locations whenwe are on
the move. If an app is confusing or hard to use, people get
frustrated because they don’t have the luxury of comfort
during use. If you find an app hard to use, you can bet that
others will, too.

Technologists spend a lot of time, money and effort making
applications work well. Always remember: Technology
exists to serve you, not the other way around. Technology
should help you do a job, entertain or delight you. It should
not make you feel stupid. If it doesn’t help you, or if makes
you feel stupid or inadequate—yes, I mean you, the one

Chapter 1: Get Started Now 7

reading this sentence—then there is a serious problem with
the software that needs to be reported right away.

First Launch Test

OK, here is something hands on. I want you to try this on
your mobile app of choice. Take your time, be thorough and
note anything interesting along the way:

1. Locate the icon for the app on your device home
or apps screen. Can you tell what the app does and
what problems it might solve by reading the title and
looking at the icon picture?

2. Tap the icon to start the app. Does it load quickly,
or does it sit there for a while before you can do
anything?

3. Examine the splash screen as the application loads.
Does it give you an idea of what the app will do?
Does it create a positive image of the company? Is
the load time reasonable, or does it seem to take too
long?

4. Once the app loads, stop and look at it carefully.

Here are some things to observe and evaluate. Does the app
ask your permission if it needs to use location services or
other privacy features? Is the design clean and uncluttered
or overly busy and confusing? Can you easily tell what
components you can interact with (tap on links, buttons,

Chapter 1: Get Started Now 8

etc.) or are you left wonderingwhat to do next? Is it obvious
how to enable features of the app? Can you quickly and
easily use the app for the purpose it was intended for, or
are you left wondering?

You do all of these things when you first launch an app, but
a lot of those actions are processed by your brain in your
subconscious. Because of that, you don’t observe closely,
and you don’t evaluate unless something goes very wrong.

The difference between merely using an app and using it
with a systematic approach is in how you pay attention to
everything you do and evaluate what the app does. And,
don’t forget to note the good things, the bad things and
any questions or concerns you have while you’re doing it!

I’m going to give you more thinking tools throughout the
book to help you be more systematic in your test approach.
Practice this style of usage, observation and evaluation in
other areas. Try out different features, and break them
down into components as I did above. If you want to try
it right now, then take a break from reading, think of other
systematic approaches and work through them.

Watch for Deletable Offenses!

Now, add some user information to your evaluation. Mo-
bile end users don’t have a lot of patience with apps. If
something bothers them, they’ll just delete the app and
move on. I call this a “deletable offense.” Watch for any
emotion that makes you feel frustrated enough to want to

Chapter 1: Get Started Now 9

delete the app, and note what occurred. This is a crucial
aspect to the success of a mobile app and a useful tool to
help us find all kinds of important bugs.

When installing an app on their devices, most people tap it
to start the program and, within seconds, decide whether
they are going to keep it. If an app works well, they keep
it. If it frustrates them, makes them angry, or doesn’t meet
their needs, they delete it. They make the decision quickly,
and deleting an app takes about two seconds.

Here are some examples from my own experience:

• Launched the app. All the icons for local services
were shown on a zoomed-out map of North America
(not even a local city). When I tried to zoom in, I
inadvertently tapped the icons, which took me to
various service pages—usually the ones on top, not
the ones underneath. The icons on top were not the
services I wanted to check out. After two minutes of
trying the app, I got frustrated and deleted it.

• Launched the app. It took 30 seconds to load. When
it did load, I was shown a confusing home screen.
Whenever I interacted with it, the app would take
forever to do something. Eventually, I would realize
I’d tapped the wrong thing and wanted to go back,
but I had to wait. This app was too slow to be useful.
Deleted.

• Launched the app. After the initial splash screen
disappeared, I saw a login screen. If I didn’t have an

Chapter 1: Get Started Now 10

account, I would need to create one to use the app.
I don’t know this vendor very well and don’t trust
them enough to sign up. Furthermore, their sign-up
form had a lot of fields to enter information into.
It would take forever to type all that on the device.
Deleted.

Here are some reasons why I will delete an app within
seconds of installing it:

• The app is difficult to use.
• The app has poor performance. It’s too slow.
• The app is unreliable, crashes, freezes up or is inac-
curate.

• The app is lame. It has a poor visual design and
execution.

• I am forced into sharing private, personal informa-
tion with an organization I don’t yet know or trust.

• The app doesn’t work as advertised.
• It’s a copy cat. The app doesn’t provide me with any
value over other mobile apps I already have (e.g.,
maps, location, web content, etc.).

As you test, listen to your emotions and watch for deletable
offenses. Once you notice a negative reaction, try to iden-
tify exactly what is bothering you. From that information,
you will find bugs that are important to your end users.

Chapter 1: Get Started Now 11

A Tester’s Mindset

Many users blame themselves for errors that occur when
using technology, thinking that maybe they did something
wrong. You must reverse this belief if you want to be an
effective tester. Here is a rule of thumb: If something unex-
pected occurs, don’t blame yourself; blame the technology.

Former Apple vice president Donald Norman’s classic book
The Design of Everyday Things demonstrates how many
things around us are poorly designed, counterintuitive and
leave us feeling silly. If you read it, you’ll never look at
a door or stovetop the same way again. You’ll realize the
problem isn’t you. It’s just that a lot of products with
poor design have conditioned you to expect mediocrity and
make you feel dumb. That’s not what we design technology
for, and the worst response when using mobile app is a
negative emotion.

Reporting Issues

When starting out testing, there are two simple categories
of problems you must report:

1. A clear programmalfunction occurs (the app crashes,
freezes, ruins data, provides incorrect results, etc.).

2. Something bothersme (annoyances, the app orwork-
flows within it are awkward, poor performance, lack
of feedback, etc.).

Chapter 1: Get Started Now 12

Keep notes of anything related to those categories, even if
it’s only a rough record. You can always go back and find
out more information later. Add exact steps and what you
think should have happened instead so that you can log the
issues in a way that others can follow and reproduce. A bug
report that can be followed, understood and reproduced
can result in a fix.

Speaking of details, make sure that you test any statement
about the software and provide evidence to back it up or
contradict it. Never assume anything just because someone
(a programmer, coworker, manager, designer, etc.) says it is
so. One of my rookie mistakes was to focus only on areas
the programmers told me to focus on and to avoid areas
they told me to avoid. However, when others—especially
our customers—found bugs in areas I had avoided, I was
on the hook.

If you are asked how well you tested a certain feature or
area of a program and you sputter out something about
not doing much because the programmer asked you not to,
it sounds foolish. After all, if you’re just going to test what
the programmer asks you to test, how useful are you to the
team?

Your job is to gather data and observe whether assumptions
about the product hold up. If someone says that they aren’t
worried about a certain area of an app and not to test it,
then you had better make sure that there is evidence to
back this up—even if you wait to test it until after you test
the areas they told you to focus on. A little evidence to the

Chapter 1: Get Started Now 13

contrary goes a long way to change people’s perceptions
about the quality of an app.

As testers, our job isn’t to assume. It’s to prove ideas
by testing. Our standard is to use cold, hard evidence to
measure those ideas. We believe in facts, not assertions.
We seek proof, so we need to have courage to think for
ourselves (even if you’re new at this).

Don’t Be a Jerk

A word of caution: Once you get used to this kind of
questioning mindset (like that of a scientist or professional
investigator), don’t become a contrary jerk. There’s noth-
ing worse than a team member who thinks he or she is a
last line of defense between the programmers (or the rest
of the team) and the customers. These kinds of people seem
smug, irritating and unapproachable. They lose credibility
because they’re hard to get along with. That means their
information may get ignored or treated with less respect
due to their abrasiveness.

Have courage and prove things out, but trust that other
team members are also trying to do the right thing. When
we test, it’s our job to provide evidence to our team’s
assertions and ideas, not to be the police force. Remember,
we’re all working together to create an amazing product.
Some of us just might have different ideas about what that
should look like.

When you test out an assertion that proves to be wrong

Chapter 1: Get Started Now 14

(e.g., someone tells you not to worry about testing a feature,
but you spend a bit of time on it anyway and find a major
bug), do not run around saying, “I told you so!” Report it in
a neutral fashion, and make sure you have evidence—exact
steps to reproduce the problem under credible conditions—
and let that evidence do the talking.

Other team members may not be happy with that evidence
in the moment, but when the product is better and your
customers are happier, they will love you for it. Eventually.

Improving Your Approach

When I was a rookie tester, I didn’t have a lot of guidance,
but I was fortunate to work on a software development
team that provided a lot of support and access to other team
members. At first, my testing looked like this:

1. Try to use the software by either figuring it out
myself or looking at user guides.

2. Ask programmers to tell mewhat theywould like me
to test.

3. Ask team members if something that bothered me
was a bug or not.

4. When needed, ask programmers to show me how to
test something I didn’t understand.

5. Review my findings and ask others if I should for-
mally record problems as bugs or not.

Chapter 1: Get Started Now 15

Notice my dependence on others for most of my testing
work. What do you think happened?

If you guessed the following, pat yourself on the back:

• My testing results were inconsistent.
• Some problems that others told me not to record
as bugs were later discovered and reported by our
customers.

In short, I missed discovering important problems because
either I completely missed a problem someone else discov-
ered or I talked myself out of logging a bug—or let someone
else talk me out of it—only to have it reappear later.

If I missed an important bug or, even worse, discovered it
and didn’t log it, that called my credibility and ability into
question.

To improve, I started to take personal responsibility of my
work and stopped relying on others to guide my testing
and problem reporting. It required both research into how
to determine testing for a project and a mindset change.

Testing Coverage

When I wanted to improve my testing approach, one of the
first people whose work I studied was Cem Kaner. In his
paper “Software Negligence and Testing Coverage¹,” Cem

¹http://www.badsoftware.com/coverage.htm

http://www.badsoftware.com/coverage.htm
http://www.badsoftware.com/coverage.htm

Chapter 1: Get Started Now 16

describes 101 different models of coverage. From Cem’s
work, I learned about different ways of determining testing
coverage and that coverage involves testing an application
using a particular approach or perspective.

Many people describe testing coverage as a singular thing,
but Cem showed me how you could look at the same
program or product in many different ways. The more
perspectives you use, the more information you can gather.

Changing your testing perspective is a powerful tool. It’s
amazing how much more you observe when you use an
application, change your perspective and focus, and use
it again. You see things you previously missed. By com-
bining different models of coverage and changing your
perspective in several different ways, you’ll find much
more important information in a shorter period of time.

Some coverage models are related to testing techniques
or approaches. There are a lot of them. Here are some
examples:

• Functional (verify specs, requirements)
• Data (app can handle and process different types of
data, whether typed in, utilized through an informa-
tion service or from other programs or files)

• Regression (repeating tests)
• Performance (app is quick and responsive)
• Localization (app can handle different languages)
• User scenarios (create credible usage stories and
follow them)

Chapter 1: Get Started Now 17

• Usability (have real end users try to complete tasks
with your app, and observe areas they struggle with)

You can define coverage inmany different ways—using dif-
ferent test techniques, tools or scenarios, or simply testing
the app in different environments. In later chapters of the
book, you’ll find several different perspectives you can use.

Identifying Problems

Always remember Bach’s definition of a bug: A bug is
something that bugs someone who matters. This is my rule
of thumb for determining whether something is a “bug” or
something else. If it bugs me, I report it.

Software testing is a simple concept, but it can be framed
in many different ways. As we saw earlier, testing often
involves using the software, observing what happens, gen-
erating test ideas, adapting your activities, and reporting
behavior that team members might be interested in.

Arguably, the most important things to note are problems,
generally referred to as “bugs.” When we test, the rest
of the team members usually want us to find important
problems quickly or demonstrate the absence of problems
to determine whether or not a product is suitable for use.
Your colleagues depend on you and your ability to identify
problems.

Don’t worry too much about whether what you observe
is a bug or not. You’ll figure that out as you work with

Chapter 1: Get Started Now 18

a team. Just note and report on anything that bugs you,
even if it is just a qualitative impression, not a bug report—
”This is great! I love the app” or “Something feels wrong
when I do this.” Sometimes, this information can be even
more useful than a formal bug report, because it helps the
team get feedback on usability. As I’ve said before—and
will again, many, many times—usability is one of the most
important factors for mobile apps.

Example Problems

Here are some examples of common problems you might
encounter with mobile applications.

The Program Stopped Working

This is also commonly referred to as a “crash.” If the
program quits unexpectedly while you are using it, that’s a
big problem that you need to report right away. There are
various ways this occurs:

1. The program just disappears. It was there, but now
it’s gone.

2. The app stops working suddenly but displays an
error message informing you that something went
wrong.

3. It “hangs”—i.e., it just stops responding. You have to
shut it down using the device’s operating system.

Chapter 1: Get Started Now 19

Wrong Answer

The application is wrong in calculations, information, or
location. It shows a price that is wrong, date and time
information is incorrect, or it has adjusted and the device
seems to be mixed up. It provides the wrong output, gets
your location wrong, or can’t decide what to display.

Strange Behavior

Mobile devices depend on a lot of different states: constant
movement of the person and the device, determining lo-
cations while moving, and wireless communication con-
ditions, to name a few. There are so many combinations
of things that can be going on at any given time, an app
may behave strangely while you are using it. Inadvertent
movement, poor wireless and even different weather and
light can cause things to go wrong. Watch for:

1. Screen redraw issues—After user input or after mov-
ing the device around, the screen is all garbled, has
different sized objects displayed or just plain-old
looks weird.

2. Odd error messages—You perform an action, and a
message pops up that doesn’t make sense, often filled
with symbols and words that don’t help you fix the
issue and continue on.

3. Strange delays or pauses that interrupt your flow of
thought and what you are trying to accomplish.

Chapter 1: Get Started Now 20

Information Corruption and Deletion

If something goes wrong in an app, information you en-
tered might get messed up and become wrong, unreadable,
or inaccurate, or removed altogether. Watch for the follow-
ing kinds of problems when you are working on a mobile
app, related to data and information.

1. Your savedwork or personal settings get deleted next
time you open the app.

2. Only part of the content shows up, or a screen only
partially loads.

3. Something you saved in the past is missing informa-
tion, or some of the information is wrong, unread-
able or garbled.

4. The application crashed and caused corruption or
deletion as a result.

Usability Issues

Usability and user experience are large, related disciplines.
If you want to learn more, research both of them by
searching with your favorite web search tool. Usability and
usability testing can provide a lot of ideas for test execution,
as well as guidelines. User experience branches out into
different areas, such as performance and context.

Chapter 1: Get Started Now 21

Something Happened and I Don’t Like it

This is a very broad category, but listen to your emotions to
determine whether there is a problem or not. Do you feel
frustrated? Tired? Angry? These are clues that the software
is behaving incorrectly. Try to figure out exactly what is
causing you to feel that way. It might be a combination of
things.

Objectionable Look and Feel

Is the design of the app confusing? Is it garish? Does it
look OK under different lights? Does it violate development
guidelines for the platform the app was developed for?
Are items too numerous or too small to see? Does it look
cohesive and smooth or cluttered and thrown together?

Long Workflows

It takes extra effort to interact with and enter information
into mobile apps. Typing on touch screens is especially
challenging, particularlywhen you are on themove. Does it
take forever to achieve a goal in the app? If it does, then that
workflow needs to be simplified or it will frustrate users.
They may even feel that the performance of the app is poor
just because it takes so long to do something.

Unclear Wording and Language

There isn’t a lot of space for words and text in mobile apps,
so we have to choose our language carefully. Do the words

Chapter 1: Get Started Now 22

help or confuse? Are they vague or specific? If they are
vague, how many ways could they be interpreted? What
happens if you try to misinterpret on purpose?

For apps that need to support different languages, this is
even more important to test in every language. Translation
is not an exact science, and it is easy to get the context
wrong and have a technically correct translation that is
humorous, nonsensical or even offensive.

No Undo or Go Back

Howmany times have you accidentally hit the “Emergency
Call” button on your smartphone and then wildly swiped
at it to make sure it cancelled?

If you’re like me, this probably happens several times a
week. It’s really easy to accidentally navigate somewhere
you don’t mean to go with a mobile app because they
move around and get jostled. This can trigger events due to
unintentional touch-screen interaction, accidentally hitting
buttons, or setting off movement or other sensors.

Within an app, youmay go down a path, change your mind
and want to reset or start over from the home screen. Many
apps don’t support this very well.

When to Get Started

Sometimes people ask mewhen to get involved on a project
and start testing. I have a mantra:

Chapter 1: Get Started Now 23

Test early, test often and test in the real world.

As soon as there is something to evaluate and provide feed-
back on, start testing. That’s usually right at the beginning
of the project.

There are a couple of good reasons for this. First, time is at
a premium on mobile projects. If you wait until a polished
product build is available near the end of the project, you
won’t have much time at all to test it. Second, it’s much
easier and often cheaper to fix problems earlier on a project
than later on. Also, great testing feedback can help shape
a product so that it is more usable and can have better
performance.

Introducing Tracy Lewis

Tracy is a friend of mine; her husband David McFadzean
and I have worked on a number of projects together. It must
have sounded fun, because last summer she asked if I could
train her to become a mobile tester. I agreed to mentor her
on one condition: she needed to review this book. If she
could use it to get started and be effective as a mobile tester,
then I had done my job.

Chapter 1: Get Started Now 24

Tracy Lewis (photo by Todd Kuipers)

To provide you with an alternate voice, Tracy will share
her thoughts on topics covered in each chapter. Watch for
asides just like this one to read her ideas and perspective:

Chapter 1: Get Started Now 25

Tracy’s Thoughts
Tracy: This chapter helped me gain confi-
dence to test. When you said to never blame
yourself for feeling confused about technol-
ogy, that really helped build my confidence.
It’s not my problem, it’s a problem with the
technology! Also, if it bugs me, then it’s a
bug worth logging.

Reading The Design of Everyday Things em-
phasized when I run into something awk-
ward, it isn’t just me. Lots of people strug-
gle with the design of doors, or household
appliances, and any time I struggle, I need
to note that and communicate that back to
the team.

It was also interesting to read about not
being a jerk. I could see how it could be
easy to criticize and forget that there are
real people who have worked really hard on
this project. What we say matters, and we
need to be careful and professional in our
communication. If we get alongwell and are
respectful, that makes for a happier team.

Concluding Thoughts

To get started testing, just use the app in a systematic way.
Carefully observe what is going on, evaluate what you see

Chapter 1: Get Started Now 26

and record everything that might be useful for others to
know.

Try to think like a scientist or an investigator. You are not
driven by emotion, and you are a smart, capable tester
with natural skills and emotions. Follow your instinct, and
always get data and evidence to back up any assertion that
you or your teammates make about the software.

If the app makes you feel confused, stupid or unsure of
yourself, it is the app’s fault. Try to figure out why it is
doing that, even if you just explain or demonstrate what
is happening and what you are thinking to a colleague
who might see something you are missing and may be able
to help you express it better. No problem or issue is too
trivial. Report them all. Let other people triage the issues
and decide what to do with them. Don’t self-censor. It is
better to have too much information than too little.

	Table of Contents
	Chapter 1: Get Started Now

