

Rapid Application Development
with CakePHP 2.0

Jose Diaz-Gonzalez

This book is for sale at http://leanpub.com/rad-cakephp-2

This version was published on 2014-11-09

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing
process. Lean Publishing is the act of publishing an in-progress ebook using lightweight tools and
many iterations to get reader feedback, pivot until you have the right book and build traction once
you do.

©2014 Jose Diaz-Gonzalez

http://leanpub.com/rad-cakephp-2
http://leanpub.com
http://leanpub.com/manifesto

Tweet This Book!
Please help Jose Diaz-Gonzalez by spreading the word about this book on Twitter!

The suggested hashtag for this book is #cakephpbook.

Find out what other people are saying about the book by clicking on this link to search for this
hashtag on Twitter:

https://twitter.com/search?q=#cakephpbook

http://twitter.com
https://twitter.com/search?q=%23cakephpbook
https://twitter.com/search?q=%23cakephpbook

Contents

User Authentication . 1
User Authentication . 1
Authorizing Paste Access . 7
Deploying the code . 11
Summary . 12

User Authentication
Many pastebins can be used anonymously - that is, anyone can come and paste anything they desire.
Our pastebin will allow users the option of logging in, allowing them to associate pastes with their
own accounts, as well as allowing some level of paste management.

User Authentication

Creating new users

Before we allow users to login, we’ll need to create both a users table, as well as a model for that
table. We can create the table using the Migrations plugin:

1 cd /vagrant/app

2

3 # ensure cakephp is running with the proper configuration on the command line

4 source /etc/service-envs/app.env

5

6 # create the migration

7 app/Console/cake Migrations.migration generate create_users id:primary_key usern\

8 ame:string:unique password:string email:string:unique created modified

9

10 # run the migration against our database

11 app/Console/cake Migrations.migration run all

Nowwe can create our model class. Model classes are used to contain logic regarding stateful access
for collections of entities from our sources of data. In this case, we’ll create a User model that will
manage all the logic regarding the retrieval and maintenance of user records. All models should go
within our Model folder to allow CakePHP’s class loader to locate the classes when necessary:

1 touch /vagrant/app/app/Model/User.php

A simple model class simply extends the AppModel class. Model classes should use the singular
version of the table name - the model for our pastes table would be Paste, and the model for our
users table is User:

User Authentication 2

1 <?php

2 App::uses('AppModel', 'Model');

3

4 class User extends AppModel {

5 }

6 ?>

Whenever we create a user, we want to be sure that their passwords are hashed. We can do so by
adding a little bit of code to our User model:

1 <?php

2 App::uses('AppModel', 'Model');

3 App::uses('BlowfishPasswordHasher', 'Controller/Component/Auth');

4

5 class User extends AppModel {

6 public function beforeSave($options = []) {

7 if (!empty($this->data[$this->alias]['password'])) {

8 $passwordHasher = new BlowfishPasswordHasher();

9 $this->data[$this->alias]['password'] = $passwordHasher->hash(

10 $this->data[$this->alias]['password']

11);

12 }

13 return true;

14 }

15 }

16 ?>

In the above code, we define a beforeSave method. This is one of several model callbacks available
to us , and allows us to modify data before it is persisted to our database. We use this in combination
with the BlowfishPasswordHasher to ensure that incoming passwords are hashed. Note that the
method returns true; if beforeSave returns false, then the save call will fail.

Implementing Login/Logout

CakePHP makes it extremely easy to log a user in and out using the AuthComponent. This class is
used in the controller layer to handle user authentication information and properly authenticate the
user against your backend.

To set it up, you’ll want to add the following configuration to your AppController::$components
array:

User Authentication 3

1 public $components = [

2 // Other configured components here

3 'Session',

4 'Auth' => [

5 'authenticate' => [

6 'Form' => ['passwordHasher' => 'Blowfish']

7],

8 'authorize' => ['Controller'],

9 'flash' => [

10 'element' => 'default',

11 'key' => 'flash',

12 'params' => []

13],

14 'loginRedirect' => [

15 'controller' => 'pastes',

16 'action' => 'index'

17],

18 'logoutRedirect' => [

19 'controller' => 'pages',

20 'action' => 'display',

21 'home'

22],

23]

24];

The above configuration will:

• Attach the SessionComponent so we can save the user’s state between page loads
• Configures the AuthComponent to use the controller method isAuthorized() to grant access
to specific actions (more on this later)

• Configure the AuthComponent to redirect our users to /pastes/index on successful login
• Configure the AuthComponent to redirect our users to / - an alias for the homepage - when
they logout

Next, we’ll want to configure a login and a logout action to handle the logic for each method. These
should go in our new UsersController as follows:

User Authentication 4

1 <?php

2 App::uses('AppController', 'Controller');

3

4 class UsersController extends AppController {

5 public function login() {

6 if ($this->request->is('post')) {

7 if ($this->Auth->login()) {

8 return $this->redirect($this->Auth->redirectUrl());

9 }

10 $this->Session->setFlash(__('Invalid username or password, try again'));

11 }

12 }

13

14 public function logout() {

15 return $this->redirect($this->Auth->logout());

16 }

17 }

18 ?>

These actions will be available at /users/login and /users/logout, as per default CakePHP route
conventions. To complete login functionality, we’ll also require a view template for the login action
as follows. You should create this file in app/View/Users/login.ctp:

1 <div class="users form">

2 <?php echo $this->Form->create('User'); ?>

3 <fieldset>

4 <legend><?php echo __('Login'); ?></legend>

5 <?php echo $this->Form->input('username'); ?>

6 <?php echo $this->Form->input('password'); ?>

7 </fieldset>

8 <?php echo $this->Form->end(__('Submit')); ?>

9 </div>

We previously mentioned that we would have define an isAuthorized() method to control access
to specific actions in our app. This method is called once a user has been logged in - that is to say,
this method is not executed for anonymous users. Anonymous users are by default not allowed to
access any page on the site by the AuthComponent other than the login action. If you want to allow
them access, you will need to add a line similar to the following to your controller’s beforeFilter()
(place this logic in your AppController):

User Authentication 5

1 public function beforeFilter() {

2 parent::beforeFilter();

3 // other beforeFilter() logic here

4

5 // Allow users access to display action

6 // in the PagesController

7 $this->Auth->allow('display');

8 }

For logged in users, we can define an isAuthorized() method to allow access to a specific page.
Since this is called after the beforeFilter(), it has access to any changed state from that part of a
request, and also has access to the request in general. If the method returns true, a user is allowed
access to execute their request. If the method returns false, one of several things can occur:

• If the app is not configured to redirect on auth error, a ForbiddenException is thrown that can
be caught by your Application’s Error Handler

• If the app is configured to redirect and has a refering page that is on the same domain as your
app, the user will be redirected to the refering page

• If the app is configured to redirect but there is no valid referer, the user will be redirected to
app’s homepage.

For our use, we’ll add the following to the AppController for now:

1 public function isAuthorized($user = null) {

2 return true;

3 }

The above will allow logged in users access to any action in the app. In the next chapter we will
cover simple access controls, but for now this is sufficient.

Registering users

Now that we have a functioning login system, we need a way for users to register for our service.
We can create a very simple register action using the Crud plugin. We will first need to map
UsersController::register() to the Crud.Add action in the UsersController::beforeFilter():

User Authentication 6

1 public function beforeFilter() {

2 parent::beforeFilter();

3 $this->Crud->mapAction('register', 'Crud.Add');

4 $this->Auth->allow('register');

5 }

We also added an Auth::allow() call to ensure non-authenticated users can actually register
themselves.

Next, we’ll want to modify the action to ensure only the username, email, and password fields are
saved and nothing more. We also want to redirect registered users to the login page, as well as
customize the flash messages that are shown to users when they submit forms:

1 public function register() {

2 // Whitelists only the desired fields for saving

3 $this->Crud->action()->config('saveOptions', [

4 'fieldList' => [

5 'User' => ['username', 'email', 'password'],

6]

7]);

8

9 // Redirect to /users/login after registering

10 $this->Crud->action()->config('redirect', [

11 'post_add' => [

12 'reader' => 'request.data',

13 'key' => '_add',

14 'url' => [

15 'controller' => 'users',

16 'action' => 'login'

17],

18]

19]);

20

21 // Updates the flash messages to be pertinent to the current user

22 $this->Crud->action()->config('messages', [

23 'success' => ['text' => '{name} was successfully registered'],

24 'error' => ['text' => 'Could not register {name}']

25]);

26

27 return $this->Crud->execute();

28 }

Note that we haven’t blocked any already logged in users from accessing the register action. We can
do that by modifying the UsersController::isAuthorized() method as follows:

User Authentication 7

1 public function isAuthorized($user = null) {

2 if ($this->request->action == 'register') {

3 return false;

4 }

5

6 return parent::isAuthorized($user);

7 }

Lastly, we’ll need to bake a template for this action. We can create a single form action using the
action argument, and alias it as register via the alias argument:

1 cd /vagrant/app

2

3 # ensure cakephp is running with the proper configuration on the command line

4 source /etc/service-envs/app.env

5

6 # create the `register` view from the form bake template

7 app/Console/cake bake view Users form register

Views that are baked via the default CakePHP templates will include a basic scaffolded
sidebar. This may be inappropriate for your application, and if so, feel free to remove it
from the baked views.

You should now be able to register new users and sign in as them. We’ll push these changes up in
the meantime:

1 cd /vagrant/app

2 git add app/Config/Migration

3 git add app/Controller/AppController.php

4 git add app/Controller/UsersController.php

5 git add app/Model/User.php

6 git add app/View/Users/

7 git commit -m "Implemented user login/logout and registration"

8 git push origin master

9 git push heroku master

Authorizing Paste Access

Now that we have implemented user authentication within our application, we’ll want to allow
users to access to viewing pastes as well as restricting editing to their own pastes. To do so, we’ll
need a way to tie a specific user to the paste they created. We also want to allow anyone to view a
paste, regardless of whether they are logged in or not.

User Authentication 8

Anonymous Access

To allow non-logged in users access to paste viewing, wewill need tomodify our PastesController::beforeFilter()
as we did in the AppController above:

1 public function beforeFilter() {

2 parent::beforeFilter();

3 // other beforeFilter() logic here

4

5 // Allow all users access to index, view, and p actions

6 $this->Auth->allow('index', 'view', 'private');

7

8 // Also allow anonymous paste creation

9 $this->Auth->allow('add');

10 }

Modeling relationships

Now that we’ve allowed anonymous users the ability to create and read pastes, we need to ensure
that we properly track pastes that belong to a particular user. Let’s start by using the Migrations
plugin to create a user_id field on the pastes table. Doing so will allow us to track pastes on a
per-user basis.

1 cd /vagrant/app

2

3 # ensure cakephp is running with the proper configuration on the command line

4 source /etc/service-envs/app.env

5

6 # create the migration

7 app/Console/cake Migrations.migration generate add_user_to_pastes user_id:intege\

8 r:index

9

10 # run the migration against our database

11 app/Console/cake Migrations.migration run all

Once the database migration has completed, we will need to modify our models to add this new
relationship. In our case, a User record may have one or more pastes, while a Paste may belong
to exactly one user. The relationship is therefore one-to-many - or hasMany - where one User can
have many Pastes. The inverse relationship is many-to-one - or belongsTo - where many Pastes can
belong to one user.

CakePHP also supports other types of relationships. To see more details, refer to the
documentation online¹

¹http://book.cakephp.org/2.0/en/models/associations-linking-models-together.html

http://book.cakephp.org/2.0/en/models/associations-linking-models-together.html
http://book.cakephp.org/2.0/en/models/associations-linking-models-together.html

User Authentication 9

To specify the relationship in the User model, we can use the $hasMany property as follows:

1 <?php

2 App::uses('AppModel', 'Model');

3

4 class User extends AppModel {

5 public $hasMany = ['Paste'];

6

7 // other code here

8 }

9 ?>

Similarly, we would use the $belongsTo property in the Paste model:

1 <?php

2 App::uses('AppModel', 'Model');

3

4 class Paste extends AppModel {

5 public $belongsTo = ['User'];

6

7 // other code here

8 }

9 ?>

Linking the two models allows us to query by one model and include related data for the other
model like so:

1 // Will find user 1 and all of their pastes

2 $this->User->find('first', [

3 'conditions' => ['User.id' => 1],

4 'contain' => ['Paste'],

5]);

6

7 // Will find all pastes as well as users that created them

8 // Will find user 1 and all of their pastes

9 $this->Paste->find('all', [

10 'contain' => ['User'],

11]);

This is an extremely powerful way of exposing querying for extra data necessary for a given page
without constructing convoluted for loops or manual joins.

User Authentication 10

There are some cases where a join is optimal or desired, in which case the CakePHP
documentation has an excellent section on using joins to retrieve related data²

Matching up a user to a paste

Whenever a user tries to create a paste, we will want to associate their user_id with the new paste.
We can do so by creating a modified PastesController::add() action as follows:

1 public function add() {

2 // previous add code here

3

4 // Get the current user_id

5 $user_id = $this->Auth->user('id');

6

7 // Hook into the initialize Crud event and pass in the user_id

8 $this->Crud->on('initialize', function(CakeEvent $event) use ($user_id) {

9 // Get a shorter reference to the request object

10 $request = $event->subject->request;

11

12 // Only modify the data if it is a POST or PUT request

13 if ($request->is(['post', 'put'])) {

14 // Set the user_id in the posted data

15 $request->data['Paste']['user_id'] = $user_id;

16 }

17 });

18

19 return $this->Crud->execute();

20 }

With the above change, a user_id will be attached to all new pastes. Next we’ll make sure that only
a user can edit and delete their own post by changing the find requirements on that action:

²http://book.cakephp.org/2.0/en/models/associations-linking-models-together.html#joining-tables

http://book.cakephp.org/2.0/en/models/associations-linking-models-together.html#joining-tables
http://book.cakephp.org/2.0/en/models/associations-linking-models-together.html#joining-tables

User Authentication 11

1 public function edit() {

2 $this->Crud->on('beforeRedirect', [$this, '_beforeRedirectSave']);

3 $this->Crud->on('beforeFind', [$this, '_onBeforeFind']);

4 return $this->Crud->execute();

5 }

6

7 public function delete() {

8 $this->Crud->on('beforeFind', [$this, '_onBeforeFind']);

9 return $this->Crud->execute();

10 }

11

12 public function _onBeforeFind(CakeEvent $event) {

13 // Get the current user_id

14 $user_id = $this->Auth->user('id');

15

16 // do not give non-logged in users edit/deletion abilities

17 if (empty($user_id)) {

18 $event->stopPropagation();

19 }

20

21 // Scope the find to the current user

22 $event->subject->query['conditions']['Paste.user_id'] = $user_id;

23 }

Instead of passing an anonymous function, we used a controller class method. Any callable
is valid for Crud event handling, which uses the CakePHP event handling under the hood.

Now that the dust has settled, here is the state of our application:

• Users can register/login/logout
• Anonymous users can view pastes, as well as create anonymous pastes
• Logged in users will have pastes associated with their users
• Only a logged in user will be able to edit/delete their pastes

Deploying the code

Now that everything is set, lets commit and deploy the code:

User Authentication 12

1 cd /vagrant/app

2 git add app/Config/Migration

3 git add app/Controller/PastesController.php

4 git add app/Model/User.php

5 git add app/Model/Paste.php

6 git commit -m "Scope pastes to users and handle private pastes properly"

7 git push origin master

8 git push heroku master

Summary

• CakePHP does not do automatic password hashing for you. This is a major change from 1.x,
so please keep it in mind if you see oddities in login code.

• Component configuration is normally handledwithin the Controller class property $components.
You can also modify this at runtime within your beforeFilter(), but it is nicer to have it all
defined in one place.

• The AuthComponent handles logged in and anonymous user access separately, so keep this in
mind when trying to allow access to a certain type of user.

• CakeEvent handling can be terminated using the stopPropagation()method, which is useful
for disallowing certain requests from continuing.

	Table of Contents
	User Authentication
	User Authentication
	Authorizing Paste Access
	Deploying the code
	Summary

