‘
o’g

Practical

Web Test Automation

Test Web Applications Wisely

Practical Web Test Automation with
Selenium WebDriver

Test web applications wisely with Selenium WebDriver

Zhimin Zhan

This book is for sale at http://leanpub.com/practical-web-test-automation

This version was published on 2023-10-26

)

Leanpub

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean
Publishing process. Lean Publishing is the act of publishing an in-progress ebook using
lightweight tools and many iterations to get reader feedback, pivot until you have the right
book and build traction once you do.

© 2012 - 2023 Zhimin Zhan

http://leanpub.com/practical-web-test-automation
https://leanpub.com/
https://leanpub.com/manifesto

I dedicate this book to my mother and father for their unconditional love.

Contents

Preface e i
Who should read thisbook? ii
How to read thisbook? iii
What’s inside the book? iii
Test scripts, Screencasts and other resources iv
Send me feedback e %
Acknowledgements v

1. What is Web Test Automation?. 1
1.1 Test automation benefits 1
1.2 Realitycheck 2
1.3 Reasons for test automation failures 3
1.4 Successful web test automation. 5
1.5 Learningapproach 6
1.6 Nextaction e e 7

2. First Automated Test 8
21 TestDesign 8
2.2 Installing TestWise (about 2 minutes) 9
2.3 Create Automated Test 12
2.4 Selenium Syntax inminutes 16
2.5 Createatestcase i i i i e 19
2.6 Runthe full test ina Chrome browser 22
27 RunningonmacOS. 23
2.8 Whenatestfailed... 24
29 Wrapup o 26

3. How Automated Testingworks. 27

3.1 Web test drivers o o o 28

CONTENTS

3.2 Automated testing rhythm oo 0. 29
33 Testframeworks 32
3.4 Run tests from the command line 36
4. TestWise - Functional TestingIDE 39
4.1 Philosophy of TestWise 39
4.2 TestWise project structure o 40
43 Testexecution. 41
4.4 Keyboard navigation 42
45 Snmippets 43
46 Scriptlibrary 44
47 Testrefactoring L 44
48 Wrapupo 44
5. CaseStudy 45
5.1 Testsite 45
5.2 Preparation 45
53 Createatestproject 45
54 TestSuite:Signin 45
5.5 Test Suite: Select Flights 46
5.6 Enter passengerdetails 47
5.7 Book confirmation after payment 47
58° Runalltests 47
59 WIapup oo 48
6. Maintainable Functional Test Design 49
6.1 Record/Playback leads to unmaintainable test scripts 49
6.2 Successcriteria L 49
6.3 Maintainable automated test design L oL 50
6.4 Maintainwithease 50
6.5 Case Study: refine testscripts L. 50
6.6 WrapUp e 51
7. Test Automation Characteristics 52
7.1 Specific 52
7.2 Clean. 52
73 Independent. 52
74 Frequent 52

7.5 Focused 53

CONTENTS

7.6 Programmable 53
7.7 Creative L 53
7.8 Sustainable 53
7.9 WIapUP o o 53
8. Functional Test Refactoring 54
81 Coderefactoring 54
8.2 Functional test refactoring 54
83 Toolsupport. 54
84 Casestudy. 54
85 Summary 55
9. Review 56
9.1 SYNaxX €ITOIS . . . v v v vt e e e e e e e e e e e e 56
9.2 Setupsourcecontrol 56
9.3 GUIObjectMap 57
9.4 Customlibraries 57
95 Debugging. 57
9.6 Cross-browser functional testing, .. 57
9.7 Data-DrivenTest 57
9.8 What is the best learning method? 58
10. Collaboration 59
10.1 Pre-requisite 59
10.2 Scenario 1: “It worked on my machine” 59
10.3 Scenario 2: Synergy e 60
10.4 Scenario 3: Acceptance Test-Driven Development 60
105 Wrapup o oo 60
11. Continuous Integration with Functional Tests 61
11.1 Longfeedbackloop 61
11.2 Continuous Integration 61
11.3 Continuous Integration and Testing 61
114 Clbuildsteps 61
11.5 Functional UI testing build step withRake 62
11.6 Set up a Continuous Testing server: BuildWise 62
11.7 Create a Build Project L 63
11.8 Trigger test execution manually 63

11.9 Feedback while test execution in progress. 63

CONTENTS

11.10 Build finished 63
11.11 Exercise: Set up CT for your own project 63
1112 Review o 63
12. Test Reporting 64
12.1 Reporting automated testresults oL 64
12.2 Defecttracking L 64
12.3 Requirement traceability oL 64
13. WebDriver Backed variants, 66
13.1 Watir L o 66
132 RWebSpeco 66
133 Capybara 66
13.4 Test design with Watir, RWebSpec and Capybara 67
135 Review 68
14. Cucumber 69
14.1 Cucumber framework Lo 69
14.2 Comparison: RSpec and Cucumber 70
14.3 RSpec and Cucumber co-exist 70
15. Adopting Test Automation 71
15.1 Seek executive sponsorship L L oL L 71
15.2 Choose test framework L oL L. 71
15.3 Selecttesttool 71
154 Findamentor. 72
15.5 Manage expectation L L L L Lo 72
15.6 Solo test automation Lo 72
157 Commonmistakes 72
158 Wrapup o o 73
Appendix 1 Functional Test Refactoring Catalog 74
Move Test Scripts L e 74
Extract Function 74
ExtracttoPage Class 74
Introduce Page Object 74
Rename 75
Appendix 2 Case Study: Test Automation in ClinicWise project 76

Build Stats 76

CONTENTS

Stage 1: Write automated tests on the firstday, .. 77
Stage 2: Set up CI server within the firstweek 77
Stage 3: Release to productionearly 77
Stage 4: Release often (daily) 77
Stage 5: Set up parallel test executioninCI 77
Questions and ANSWETS o v v it e e e e 77
Resources 78
BoOKks . . . 78
Web Sites 79
Tools . . . e 79

References 80

Preface

On April 3, 2013, Wired published an article “The Software Revolution Behind LinkedIn’s
Gushing Profits™. The revolution “completely overhauled how LinkedIn develops and ships
new updates to its website and apps, taking a system that required a full month to release new
features and turning it into one that pushes out updates multiple times per day” LinkedIn
is not alone, Google has accomplished this long before that. As a matter of fact, LinkedIn’s
success is tracked back to luring a Google veteran in 2001. “Facebook is released twice a
day” and they claimed “keeping up this pace is at the heart of our culture™.

Release software twice a day! For many, that’s unimaginable. You may wonder how they
could ensure quality (and you know the high standard from them). The answer is, as the
article pointed out, to use “automated tests designed to weed out any bugs””

After working on numerous software projects for a number of years, I witnessed and
had been part of many what I call ‘release panic syndromes’. That is, with the deadline
approaching, the team’s panic level rises. Many defects were found from the last round of
manual testing by the testers. The manager started prioritizing the defects (or adjusting some
to features), and programmers rushed to fix just the critical ones. Testers restarted the testing
on the new build that had fixed some but not all the defects. Then here came the bad news:
several previously working features are now broken, Argh!

I believe there is a better way to do software development that does not have to involve this
kind of stress and panic. This is how my interest in automated testing started (in 2006). I
made the right decision to use free, open-source, and programming based test frameworks.
(It is quite obvious now, as Selenium WebDriver is the best sought after testing skill on
the job market. Back then, people turned to record/playback commercial tools with vendor-
proprietary test script syntax). The first test framework I used (for my pet projects) was Watir.
I was quickly convinced that this approach was the answer.

In 2007, I had the opportunity to put my approach into practice in a government project.
The outcome was beyond everyone’s expectation: over two years and countless releases,
there were no major defects reported by customers. The team had high confidence in the
product. These automated tests also provided the safety net for some major refactorings,

'http://www.wired.com/business/2013/04/linkedin- software- revolution/
*http://www.facebook.com/notes/facebook-engineering/ship-early-and-ship-twice-as-often/10150985860363920
*http://www.seleniumconf.org/speakers/

http://www.wired.com/business/2013/04/linkedin-software-revolution/
http://www.wired.com/business/2013/04/linkedin-software-revolution/
http://www.facebook.com/notes/facebook-engineering/ship-early-and-ship-twice-as-often/10150985860363920
http://www.facebook.com/notes/facebook-engineering/ship-early-and-ship-twice-as-often/10150985860363920
http://www.seleniumconf.org/speakers/
http://www.wired.com/business/2013/04/linkedin-software-revolution/
http://www.facebook.com/notes/facebook-engineering/ship-early-and-ship-twice-as-often/10150985860363920
http://www.seleniumconf.org/speakers/

Preface ii

which would have not been possible without them. A business analyst once said, “before
every demonstration to our customers, it is a good feeling of knowing every release has
been thoroughly tested.” The synergy of the flexible test framework, maintainable test design,
team collaboration with the same simple testing tool and continuous integration supporting
functional test execution really made a big difference.

There is now a clearly converging trend in web application development on technology
choices, such as cloud deployment, light and productive web frameworks such as “Ruby
on Rails™, JQuery JavaScript Library, Twitter BootStrap UI themes, Font Awesome icons,
..., etc. The competitions among web applications are less on technologies, but weigh more
on the development process to ensure pushing out high-quality releases frequently. A fact:
Facebook was not the first social networking web site.

A friend of mine, who developed a quite successful public web application, told me in an
uneasy tone that he just found out another competitor product at a cheaper price. This is
inevitable, the competition among web applications is global, which means, there are people
working at 10% of your hourly rate to compete against you. The only way to win the race, in
my opinion, is to greatly enhance your productivity and reduce maintenance costs. This can
be achieved by applying test automation and continuous integration with instant benefits
without much effort (if doing it properly). My reply to my friend: “If your competitors start
to invest in test automation seriously, you shall be worried”

In Appendix II, I share my experience of developing ClinicWise, a modern web-based
clinic management system. Thanks to comprehensive automated Ul testing, ClinicWise is
frequently released (daily) with new features and updates. ClinicWise is developed and
maintained in my spare time.

The purpose of this book is to share my journey of test automation for web applications:
from writing the first test to developing and maintaining a large number of automated test
scripts.

Who should read this book?

Everyone who works on a software team (including testers, programmers, business analysts,
architects, and managers) builds a web application and wants to improve the quality of
software while saving time and money can benefit from reading this book. It may sound like
a bold statement, but it is the outcome I obtained from some projects whose team members
have embraced the techniques and practices presented in this book. Those projects delivered
reliable software releases frequently, stress-free. You can achieve this too.

“http://yourstory.com/2013/02/startup-technologies-top- 6-technologies-used-at- startups/

http://yourstory.com/2013/02/startup-technologies-top-6-technologies-used-at-startups/
http://yourstory.com/2013/02/startup-technologies-top-6-technologies-used-at-startups/
http://yourstory.com/2013/02/startup-technologies-top-6-technologies-used-at-startups/

Preface iii

Prior experience with automated testing is not necessary. Basic programming concepts will
help, but again, not necessary.

How to read this book?

I strongly recommend readers to read through Chapters 1-9 in order, only skip Chapter 4
if you have decided on the testing editor or IDE. Chapters 10-15 are largely independent of
one another. You can, therefore, read them in the order that suits your interests. Readers can
also skim through and come back for details later if necessary.

Some chapters contain hands-on exercises (with step by step guides). Typically it will take
about 10-30 minutes to complete an exercise. Readers can choose to follow the exercises
while or after reading a chapter. The main point is: to master test automation, you have to
do it.

What's inside the book?

In part 1, I introduce Web Test Automation and its benefits, which many believe but few
actually achieve it. use a metaphor to illustrate practical reasons why most software projects
conduct functional testing manually despite knowing the great benefits of test automation.
Then the journey starts with a case study to help write your first Watir automated test in
about 10 minutes.

In part 2, I present a brief introduction of test frameworks and tools, followed by a case study
showing the development of Selenium WebDriver tests for a live test site with the help of a
recorder. Along the way, some testing techniques are introduced.

In part 3, I present an intuitive and maintainable automated test design: using reusable
functions and page objects, followed by a case study showing the transforming of recorded
test scripts in a maintainable way. Then I introduce an important concept: functional
test refactoring, a process of testers applying refactorings to test scripts efficiently with
refactoring support in testing tools such as TestWise IDE”.

With a growing number of automated tests, so is the test execution time. Long feedback loops
really slow down development. In part 4, I show how team collaboration and continuous
integration can help to improve the feedback time greatly.

*https://agileway.com.au/testwise

https://agileway.com.au/testwise
https://agileway.com.au/testwise

Preface iv

In Part 5, I switch the attention to several WebDriver backed variant frameworks: Watir,
RWebSpec, and Capybara and introduce another test syntax framework Cucumber®. Then I
will show how to apply the maintainable test design and techniques to them. Finally, I share
some strategies to apply test automation to your project.

Test scripts, Screencasts and other resources

To help readers learn test automation more effectively, the book has a dedicated site at:
http://zhimin.com/books/pwta’, which contains the following resources:
+ Software

Test automation is not necessarily expensive. All test frameworks featured in this book
are free and open-sourced. Testing tools used for the exercises in this book are also free,
and there are instructions to cater to other text-based testing tools.

« Sample test scripts

The sample test scripts for the exercises are ready-to-run. This book covers several
popular test and syntax frameworks: Selenium-WebDriver, Watir, RWebSpec, RSpec
and Cucumber.

To help readers understand the differences, I have created 6 test projects with different
combinations: https://github.com/testwisely/agiletravel-ui-tests®.

« Sample web sites

For readers who need web sites to try out automated test scripts, I have prepared two
test sites for you:

— Agile Travel: a simple flight booking site, which is used in the exercises.

— WhenWise: a feature-rich service-booking web app.

« Tutorial screencasts

There are screencasts for readers who will learn better with audio and video, so you
will be able to see how it is done step by step.

For access code see the Resources section of this book.

®http://cukes.info/
"http://zhimin.com/books/pwta
*https://github.com/testwisely/agiletravel-ui-tests

http://cukes.info/
http://zhimin.com/books/pwta
https://github.com/testwisely/agiletravel-ui-tests
http://cukes.info/
http://zhimin.com/books/pwta
https://github.com/testwisely/agiletravel-ui-tests

Preface v

Send me feedback

I will appreciate hearing from you. Comments, suggestions, errors in the book and test scripts
are all welcome. You can submit your feedback on the book web site.

Acknowledgements

I would like to thank everyone who sent feedback and suggestions, particularly Mingli Zhou,
Darren James, Tim Wilson, Lloyd Blake, Hoang Uong, Scott Cavness and Lien Nguyen, for
their time and wisdom.

I owe a huge ‘thank you’ to people behind great open-source testing frameworks such as
Selenium-WebDriver and RSpec, and of course, the beautiful Ruby language.

Functional testing via User Interface is practical and light on theory, so is this book. I hope
you find this book useful.

Zhimin Zhan
Brisbane, Australia

1. What is Web Test Automation?

Web Test Automation, or automated functional testing for web applications via the Graphical
User Interface (GUI), is the use of automated test scripts to drive test executions to verify
that the web application meets its requirements. During the execution of an automated test
for a web site, you see mouse and keyboard actions such as clicking a button and typing text
in a text box in a browser, without human intervention. Web Test Automation sits under the

category of black-box functional testing, where the majority of test efforts are in software
projects.

Functional Testing vs Unit Testing vs Non-Functional Testing

Functional testing is to verify function requirements: what the system does. For example,

“User can request a password reset by providing a valid email”. Functional testing is the
focus of this book.

Unit testing is a type of white box testing performed by programmers at the source code
level. It is of no concern to software testers. Unit Test is a term that gets misused a lot. A
more correct term would be “Programmer Test”. A product that passes comprehensive
programmer tests can still fail on many functional tests. That’s because unit tests are
from a programmer’s perspective, and functional tests are from a user’s perspective. A
programmer test is a kind of automated test too.

Non-functional testing is the testing of how the system works. For example, “The response
time of the home page must not exceed 5 seconds” Some types of non-functional testings,
load testing, in particular, utilize automated test tools as well.

1.1 Test automation benefits

The benefits of test automation are plenty. Below are four common ones:

« Reliable. Tests perform the same operations precisely each time they are run, therefore
eliminating human errors.

What is Web Test Automation? 2

« Fast. Test execution is faster than done manually.

» Repeatable. Once tests are created, they can be run repeatedly with little effort, even
at lunchtime or after working hours.

« Regression Testing. “The intent of regression testing is to ensure that a change, such as
a bug fix, did not introduce new faults” [Myers, Glenford 04]. Comprehensive manual
regression testing is almost impossible to conduct for two reasons: the time required
and human errors. As Steve McConnell pointed out, “The only practical way to manage
regression testing is to automate it.” [McConnell]

9 What do | like about test automation?

If you want me to use only one adjective to describe web test automation, it is fun.
As a software engineer, I enjoy creating something that can do the work for me. I
have a habit of triggering the execution of a test suite before going out for lunch.
I like the feeling of “still working” while enjoying a meal. When I come back, a
test report is there.

As a product owner, I think it is essential to release software frequently without
fear. To achieve that, comprehensive test automation via Ul is a must.

1.2 Reality check

With more software projects adopting agile methodologies and more software application
developments moving towards the Web, you would assume web test automation would be
everywhere now. The answer is, sadly, no. In fact, functional testing in many projects is
still executed in pretty much the same way: manually. For the past two decades, I have seen
automated Ul testing was done poorly or not at all in numerous “agile” projects, however, it
has been talked a lot. Michael Feathers, a renowned agile mentor and the author of Working
Effectively with Legacy Code’, summarized better than what I can in this blog article.

'http://www.amazon.com/Working- Effectively-Legacy-Michael-Feathers/dp/0131177052

http://www.amazon.com/Working-Effectively-Legacy-Michael-Feathers/dp/0131177052
http://www.amazon.com/Working-Effectively-Legacy-Michael-Feathers/dp/0131177052
http://www.amazon.com/Working-Effectively-Legacy-Michael-Feathers/dp/0131177052

What is Web Test Automation? 3

" Ul Test Automation Tools are Snake Qil - Michael Feathers

It happens over and over again. I visit a team and I ask about their testing
situation. We talk about unit tests, exploratory testing, the works. Then, I ask
about automated end-to-end testing and they point at a machine in the corner.
That poor machine has an installation of some highly-priced per seat testing tool
(or an open-source one, it doesn’t matter), and the chair in front of it is empty. We
walk over, sweep the dust away from the keyboard, and load up the tool. Then,
we glance through their set of test scripts and try to run them. The system falls
over a couple of times and then they give me that sheepish grin and say “we tried””
I say, “don’t worry, everyone does.” [Feathers 10]

Michael Feathers was spot on summarizing the status of automated end-to-end testing. Over
the last 20 years, I pretty much experienced the same: software teams were either ‘pretending
automated UI testing’ or ‘not doing it at all’.

1.3 Reasons for test automation failures

The software testing survey conducted by Innovative Defense Technologies in 2007 [IDT07]
shows “73% of survey respondents believe Automated Testing is beneficial but few automate”.
The top reasons for survey participants not automating their software testing (while agreeing

with the benefits) are:

« lack of time
« lack of budget
« lack of expertise

These reasons sound right to most people. However, saving time and money are two benefits
of test automation, isn’t that a contradiction (for lack of time and budget)? What are the
real difficulties or challenges, apart from political or project management ones, that projects
encounter during their adventures in automated testing?

To make it easy to understand, we can compare a project’s test automation attempt with a
person who is trying to climb over a standing two-hump camel from the front. Let’s consider
each of the following challenges he faces:

What is Web Test Automation? 4

Hard
. to maintain

- N fﬂ\.

Long
A —
Learning Curve: “ f’?EdbaCk loop
Steep —

Out of Reach:
i —
Expensive

Test Automation Camel

Figure 1-1 Test Automation Camel (graphics credit: www.freevectordownload.com)
1. Out of reach: Expensive

Commercial testing tools are usually quite expensive (I won’t list prices here, in fact, I
couldn’t get prices for some so-called leading testing tools on their web sites, which is telling
in itself). Automated testing is one of a few activities in software projects that the whole
team can contribute to and benefit from. Besides testers, programmers may run automated
tests for self-verification and business analysts may utilize automated tests for customer
demonstrations. However, the high price of commercial testing tools makes the whole team’s
adoption of automated testing unfeasible.

There are free, open-source testing frameworks, such as Selenium WebDriver and Watir,
both of which are featured in the classic book ‘Agile Testing” by Lisa Crispin and Janet
Gregory. However, the idea of free and open-source testing frameworks is still not appealing
to many test managers. (Update: the previous statement was written in 2010, the situation
has changed now as Selenium WebDriver is the dominant testing framework). Lack of skills,
dedicated tools, and support are their main concerns.

2. Steep Learning Curves: Difficult to learn

Traditional commercial tools are usually focused on a Record and Playback approach
with test scripts in a vendor-proprietary syntax. It looks easy when you watch the sales
presentations. Unfortunately, it is a quite different story in real life (a programmer’s minor

*http://www.agiletester.ca/

http://www.agiletester.ca/
http://www.agiletester.ca/

What is Web Test Automation? 5

change to the application can ruin your hours of recording). When testers have to open the
raw test scripts (generated by recorders) to edit, reality bites.

Open source test frameworks, on the other hand, require some degree of programming
efforts, Selenium-WebDriver and Watir are among the popular ones. With programming,
they provide the flexibility needed for automated testing. However, the fact is that the
majority of software testers do not possess programming skills, and many of them feel
uncomfortable to learn it. Besides, there are few dedicated testing tools supporting these
open-source test frameworks designed to suite testers. (Programming IDEs are designed for
programmers, not for testers who may find them complicated and overwhelming).

3. Hump 1: Hard to maintain

Software under development changes frequently, and automated UI test scripts are vulnera-
ble to application changes. Even a simple change to the application could cause many existing
test scripts to fail. This, in my view, is the most fundamental reason for test automation
failures.

4. Hump 2: Long feedback loop

Compared to programmer tests (which if written well, should have an execution time under
0.1 second), automated functional tests through UI are relatively slow. There is practically
very little that testers can do to speed up the execution of functional tests. With the number
of test cases growing, so will be the test execution time. This leads to a long feedback gap,
from the time programmers committed the code to the time test execution completes. If
programmers continue developing new features or fixes during the gap time, it can easily
get into a tail-chasing problem. This will hurt the team’s productivity, not to mention the
team’s morale.

New Challenges for testing Web applications

Specifically to web applications, with the adoption of AJAX (Asynchronous JavaScript and
XML) and increasing use of JavaScript, websites nowadays are more dynamic, therefore,
bring new challenges to web test automation.

1.4 Successful web test automation

Having identified the reasons for test automation failures in projects, it becomes clear what
it takes to succeed in web test automation:

1. Test scripts must be easy to read and maintain.
2. Test framework must be reliable and flexible.

What is Web Test Automation? 6

3. Testing tool must be easy to learn, affordable and support team collaboration.
4. Test execution must be fast.

Is that all possible? My answer is ‘Yes’. The purpose of this book is to show how you can
achieve these.

1.5 Learning approach

This is not just another book on testing theories, as there is no shortage of them. In this book,
we will walk through examples using test framework Selenium WebDriver and functional
testing IDE TestWise. The best way to learn is to start doing it.

My father is a well respected high school mathematics teacher in our town. His teaching style
is “teaching by examples”. He gets students to work on his carefully selected math exercises
followed by concise instruction, then guides students who face challenges. By working with
many testers, I found this is the most effective way for testers to master automated testing
quickly.

For most web applications, regardless of technologies they are developed on, Microsoft
Windows is often the target platform (at least for now). It will be the main platform for
our exercises in this book:

Web Browser: Chrome, Internet Explorer and Firefox
Test Framework: Selenium WebDriver
Testing Tool: TestWise IDE

It is worth noting that the practices and test scripts work for macOS and Linux as well. If you
are Mac user, like myself, the learning process is the same (majority of the test scripts run
without change) except the screenshots shown in the book look different. All the techniques
and test scripts are directly applicable for cross-browser testing.

On testing tools, I use TestWise, a functional testing IDE that supports Selenium WebDriver,
Watir and Appium (TestWise maybe used free), in this book. For readers who prefer their
own favorite editors or IDEs, you can still use them, as all test scripts shown in this book are
plain text. I will also provide instructions on how to execute tests from the command line.

Example test scripts for chapters in this book can be downloaded at the book site, and you
can try them out by simply opening in TestWise and run. I have provided screencasts there
as well, readers can watch how it is done.

In this book, we will focus on testing standard web sites (in HTML), excluding vendor-

What is Web Test Automation?

specific and deprecated technologies such as Flash and SilverLight. The techniques shown
in this book are applicable to general testing practices.

1.6 Next action

Enough theory for now. Let’s roll up sleeves and write some automated tests.

2. First Automated Test

A journey of a thousand miles must begins with a single step.

—Lao Tzu

Let’s write an automated web test. If you are new to automated testing, don’t feel intimidated.
You are going to see your first automated test running in a Chrome browser in about 10
minutes, and that includes installing the test tool!

2.1 Test Design

A test starts with a requirement (called User Story in agile projects). Quite commonly, the
first simple requirement to test is User Authentication. We will use this requirement for our
first test in this exercise.

By analyzing the requirement and the application (see the screenshot below),

,_", travel.agileway.net/login *

[N
]|

<« ' [travel.agileway.net/login o
Reqister | Login

Agile Travel

User Name:
Password:

Remember me
Sign in
we can start to collect the test data:

Site URL: https://travel.agileway.net
User Login/Password: agileway/testwise

First Automated Test 9

and design the test steps:

Enter username “agileway”

Enter password “testwise”

Click the “Sign in” button

Verify: “Welcome agileway” appears
Click the “Sign off” link

gk e

You might by now be saying “there is no difference from manual testing”. Your observation
is correct. If you currently work as a manual tester, you probably feel relief at knowing your
test design skills can apply to automated testing. As a matter of fact, we usually perform the
test steps manually as verification of test design before writing automated test scripts.

Now we are going to automate it. The main purpose of this exercise is to help you write an
automated Selenium WebDriver test case and watch it running in a browser, in a matter of
minutes. Don’t pay attention to details yet, as it will become clear as we move on. If you get
stuck, follow the screencast for this exercise at http://zhimin.com/books/pwta’.

2.2 Installing TestWise (about 2 minutes)

In this exercise, we will use TestWise, a Functional Testing IDE (created by me) built for
Selenium WebDriver. You can use TestWise free, no need to pay license fees.

Prerequisite

« A PC with MS Windows 10+ or macOS or Linux
o Chrome browser
Download

TestWise (two editions) can be downloaded at https://agileway.com.au/testwise/downloads®.
If you are an absolute beginner to test automation, I strongly suggest starting with the
TestWise Ruby edition first.

« TestWise Ruby edition (Windows only)

TestWise Ruby edition (29MB in size) bundles Ruby, ChromeDriver and required
libraries (called Gems) required.

'http://zhimin.com/books/pwta
*https://agileway.com.au/testwise/downloads

http://zhimin.com/books/pwta
https://agileway.com.au/testwise/downloads
http://zhimin.com/books/pwta
https://agileway.com.au/testwise/downloads

First Automated Test 10

+ TestWise Standard edition (for macOS/Linux/Windows)

TestWise Standard editions are available for all three desktop platforms. Different
from TestWise Ruby edition, the stanard edition does not provide the test execution
environment (executing tests from the command line), which you can install yourself.
It is quite straightforward, you can find the installation instructions in the next
Chapter.

TestWise Ruby Edition = TestWise Standard Edition + Ruby + Testing Libraries +
ChromeDriver.

Install

o TestWise IDE

- Windows platform

Double click TestWise-x.x-ruby-setup.exe to install, accept all default options. The
default installation folder is C:\agileway\TestWise6. Launch TestWise after the
installation completes.

If you using TestWise Ruby edition on Windows, can skip the below in the ‘Install’
and ‘Setup’ sections below.

— macOS

Standard installation procedure: open the DMG file, drag the app to the ‘Applica-
tions’ folder.

— Linux

tar -zxvf testwise-x.x.zip then runinstall.sh there.

« Set up Execution Path in TestWise

If you are using standard TestWise edition, after installation, make sure add your RUBY
path and ChromeDriver path to the TestWise’s settings (as below).

First Automated Test 11

TestWise Settings >

General EEnvironment‘u‘ariables Editor Frameworks

Execution Path (Test frameworks, Browser drivers, Git)

Ch\Ruby26-x64'\bin; Chagileway'\Python374 Scripts'; Chagileway' Python3 74 CAWINDOWS
systemn 32 CAWINDOWS; CAWINDOWS Systerm 32\ WindowsPowerShellhw1.00 C:\Program Files
WGithemd

TestWise will invoke commands in the abowve PATH to run tests. Check

+ TestWise Recorder or Selenium IDE (optional)

TestWise Recorder is a Chrome extension (created by me), which records your opera-
tions into executable Selenium WebDriver and Watir test scripts while you navigate
through your web application in Chrome. To install, open chrome://extensions in
Chrome, then download the recorder® (a zip file) and drag it to the Chrome tab.

You will see a warning or “Errors” shown next to the extension. This is because
TestWise Recorder was developed based on Chrome Extension manifest version 2
specification, which will be deprecated in 2023. For this reason, “TestWise Recorder”
has been removed from the Chrome Web Store page?

I had no plans to update TestWise Recorder, as I don’t use recorders for test
automation. Also, I don’t recommend beginners use it either, most attendants to
my one-day training expressed they like handcrafting the selenium tests.

*https://chrome.google.com/webstore/detail/testwise-recorder/febfogamlejngokejcaimklgefphjbok

Click the recorder icon on the toolbar to enable recording.

travel.agileway.net/login Tl @ ' TestWise Recorder 0.3.2 (for Selenium WebDriver)
M stop Site: httpy//travel. agileway.net/login
Register | Login WebDriver (Ruby)
1 driver = lenium: :WebDriver.for :chrome

Se
2 driver.get("http://travel.agileway.net/login")

*https://agileway.com.au/testwise/recorder

https://agileway.com.au/testwise/recorder
https://chrome.google.com/webstore/detail/testwise-recorder/febfogamlejngokejcaimklgcfphjbok
https://chrome.google.com/webstore/detail/testwise-recorder/febfogamlejngokejcaimklgcfphjbok
https://agileway.com.au/testwise/recorder

First Automated Test 12

Selenium IDE is the official recorder created by the Selenium team. It has more
features than TestWise Recorder. Please be aware of the name, it is not an IDE, but
rather a record-n-playback tool. The new version (v4) is a lot better than its precessors
in terms of accuracy. Still, I don’t use it as hand-craft scripting creates better automated
test steps, and it is quite easy too.

You may use Selenium IDE for this exercise, or better, not using a recorder at all.

Unlike other most Test Automation Tools, TestWise does not come with a recorder
becuase it discourage recording (but not excluding it either). In TestWise, you can
create a test script file normally, have the freedom to incorporate recorded test steps
into your script as necessary.

2.3 Create Automated Test

Now we are ready to create the test for our requirement: “User can log in the site”. Hope you
still remember the test design steps and test data.

Create a new test project

TestWise has a project structure to organize test scripts. This structure is simply a folder
containing all test related files such as test scripts and test data.

As we start from scratch, we need to create a new project first. If a sample project is already
opened in TestWise, we need to close it.

Select menu File — New Project, which will bring up the window shown below.

First Automated Test

Project name: | AgileTravel |

Location: | Ci\testprojects\AgileTravel |

Enter or select an empty folder for the test project.
Test Framework
Automnation Driver: (®) Selenium-WebDriver OAppium () Watir
Test Script Syntax: ® RSpec () Pytest () Mocha () Cucumber

Project Settings
(®) Website URL App Executable WP App 1D

| http://travel.agileway.net

Create project skeleton
Include CI build tasks for BuildWise
[Jinclude the helper for load testing

0K Cancel

13

Enter a project name, project folder (a newly created one) and the URL of the web
site to be tested. In this case, we enter “Agile Travel”, “C:\testprojects\AgileTravel” and
“http://travel.agileway.net” respectively, then click ‘OK’ button. TestWise will create the

project with skeleton files.

PROJECT EXPLORER C
S agiletravel

B . pages

P! abstract_page.rb

. spec

(T) new_spec.rb
H)

H) spec_helper.rb

% Rakefile

agiletravel.tpr

-4 agileway_utils.rb

4@ buildwise.rake

- buildwise_rspec_formatter.rb
[H) test_helperrb

Please note, we just enter the host name of URL, not https://travel.agileway.net/login,

rather https://travel.agileway.net.

Create a test script file

Now create the test script file for our test. Select ‘File’ — ‘New File’,

First Automated Test 14

MNew Test File % x

Ternplate: (®) Test OPageCIass (O Blank () Cucumber Feature

Directory: | Ch\testprojectsi\AgileTravel\spec |
File name: | (0L specrb |

0K Cancel

Type text ‘login’ and press Enter to create new test script file: login_spec.rb

Try naming the test script file something related to the requirement, so you can
find it easily later.
A new editor tab is created and opened with a test skeleton:

(1) login_spec.rb ¢
load File.dirname(__FILE__) + '/../test_helper.rb’

3 = describe "Test Suite" deo

4 include TestHelper

5 B before(:all) do

7 # browser_type, browser options, site url are defined in test_helper.rb
8 @driver = %browser = Selenium::WebDriver.for(browser type, browser options)
3 driver.manage().window().resize to(12806, 728)

18 driver.get(site_url)

11 end

13 3 after(:2ll) do

14 driver.quit unless debugging?

15 end

17 = it "Test Case Name" do

18 # driver.find element(...)

19 # expect(page text).to include(..)

20 end

22 end

Run the empty test case

Currentlly, except comments (lines started with #), our test case (between 1t to end) is empty.
Right click a line within the test case (line 17 to 21), then select ‘Run “Test Case Name™”.

First Automated Test 15

17 = it "Test Case Name" do

18 # driver.find_element & Run "Test Case Name" Ctrl+Shift+F10
13 # expect(page_text).t [Run test cases in 'login_spec’ Shift+F10
2a end Run Selected Scripts Against Current Browser Alt+F11

You shall see a new Chrome browser launching and open your target web site. This is to
make sure your test execution environment is correct.

If no Chrome browser launched ...

The most likely reason is that the ChromeDriver does not match the Chrome browser on
your machine. Chrome browser, by default, self-updates every two months or so. As a result,
the chromedriver needs to be updated accordingly.

To find out the exact reason, click ‘Test output’ tab in TestWise as below:

BE Test Case Name

[l Done: 1test (9.9 5], Failed: 1 [Test] h. _ ®

Summary Test Qutput

P
5 £
s X _
H Run opticns: include {:locations=>{"./spec/legin_spec.rb"=>[2@]}} %;?

E
Failures:
1) Login Test Case Name
Failure/Error: (@driver = $browser = Selenium::WebDriver.for(browser_type, browser_cptions)
Selenium: :WebDriver: :Error::SessionNotCreatedError:

session not created: This version of ChromeDriver onl orts Chrome version 79

The text “session not created: This version of ChromeDriver only supports Chrome version
79” suggests the ChromeDriver v79 (under TestWise Ruby Edition) does support the newer
Chrome (v81 in this case) on the machine.

The workaround is simple:

1. Find out your Chrome version.

2. Download the ChromeDriver* matches the browser.

3. Put chromedriver executable in a PATH in TestWise’s settings (‘Execution’ Tab —
‘Execution Path’).

for TestWise Ruby edition, simply copy chromedriver.exe to
C:\agileway\TestWise6\interpreters\ruby\bin

*https://chromedriver.chromium.org/downloads

https://chromedriver.chromium.org/downloads
https://chromedriver.chromium.org/downloads

First Automated Test 16

Recording Test Steps (optional)

I Don’t recommend this way

Open the site URL https://travel.agileway.net in Chrome and enable “TestWise Recorder’
extension. Perform the test steps below manually:

1. Enter username ‘agileway’

2. Enter password ‘testwise’

3.

4. To add verification for text ‘Welcome agileway’, highlight the text in the browser, right-

Click the ‘Sign in’ button

click and select “Verify Text” in the context menu.
Click the “Sign off” link

Welcome aailewav | Sian off
Look Up “Welcome agileway”

Copy
Search Google for “Welcome agileway”
Print...

TestWise Recorder » Verify Text

Assert Title
.

Test steps are recorded along the way. Once done, inside the TestWise Recorder window,
click the ‘Copy’ button on top to copy recorded test steps to clipboard.

[JON] TestWise Recorder 0.4.1 (for Selenium WebDriver)
B stop https://travel.agileway.net/login Clear Copy
Ruby

driver = Selenium::WebDriver.for :chrome
driver.get("https://travel.agileway.net/login")

driver.find element(:id, "username").send keys("agileway")

driver.find element(:id, "password").send keys("testwise")

driver.find element(:name, "commit").click

expect(driver.find element(:tag_name, "body").text).to include("Welcome
agileway")

driver.find element(:link_text, "Sign off").click

2.4 Selenium Syntax in minutes

Putting aside what you might have heard about Selenium previously, I am telling you that
Selenium WebDriver is the easiest-to-learn test automation framework. In doubt? You will
find out yourself in minutes.

First Automated Test 17

A web page contains many page elements, such as links, text fields and buttons. Selenium
syntax follows a simple and intuitive pattern:

locate a web control and drive it

Step 1: Find a web control (also known as element)

Step 1. Find a control (element)
by one of 8 locators

Register | Login

Agile Travel

User Name: agileway

Password: testwise

Remember me

Signin

For example, driver.find_element(:id, "username") for the “User Name” text box.

Step 2: Perform an action on it

Step 2. perform action on it

Register | Login

Agile Travel

User Name: agileway
|gotyor

Password: testwise

Remember me

Signin

First Automated Test

18

Typing text is an action we can perform on the text box, in Selenium, it is send_keys.
This Complete step driver.find_element(:id, "username").send_keys("agileway")

enters a user name.

Some might wonder, how about a link such as ‘Register’ link on this page? The selenium
step will be driver.find_element(:link, "Register").click.

Astute readers will realize that Step 2 is easy, the effort is on Step 1: how to find a web

element? It is not hard

either, and you don’t need other tools. Just simply right-click the

target element in a web page and select ‘Inspect’.

input n'ame utf8" type="hidden" value='"v

Register | Login v<div style="margin-top: 20px;
= v<div id="login-box" style="margin-top:
Aglle Travel 5px; margin-left: 5px;
v<p
span class title>User Name</span
User Name: wyon
“ - br
Emoji & Symbols input type="text" name="username" id
username"” size="25"> == $0
Password:

Remember m¢

Signin

driver.find_element(:id, "username"

span class title>Password</span
Paste br
Paste and Match Style input id="password" name="password

#container form div #login-box p input#username
Language Settings

Writing Direction < Styles Computed DOM Breakpoints >

BT No breaipont

HTML is behind a web page. We can see the HTML fragment with this element highlighted.
Then choose one of Selenium’s nine locators.

Locator Example

ID find_element(:id, "user")

Name find_element(:name, "username")

Link Text find_element(:1link_text, "Login")

Partial Link Text find_element(:partial_link_text, "Next")

XPath find_element(:xpath, "//div[@id="1login"]/input")
Thgbﬁune find_element(:tag_name, "body")

Class Name find_element(:class_name, "table")

CSS find_element(:css, "#login > input[type="text"]")

Relative (v4)

find_element(relative: { tag_name: "img", right: elem })

First Automated Test 19

The easy choice, obviously, is to use ID. You may use any locator for a page element.
Beginners might feel a little overwhelmed, but don’t worry. Your start with ID, and learning
to use other locators gradually.

2.5 Create a test case

Now you should have some test steps created by a recorder or manual scripting.

Recorder-generated

Switch to the TestWise IDE (the login_spec.rb editor tab shall be still active), paste recorded
test scripts into the test case.

17 & it "Test Case Name" do
18 # driver.find element(...) BE Run "Test Case Mame" Ctrl+Shift+F10
19 # expect(page_text).to incl
e end P (,D e) [Run test cases in 'login_spec’ Shift+F10
:: Run Selected Scripts Against Current Browser Alt+F11
22 end Refactor »
- Run to line
Toggle Breakpoint Ctrl+F9
Clear all Breakpoints
Cut
Copy
Paste [}
The test case is created.
While we are here, update the test suite name (the string in describe "...") to “User

Authentication” and the test case’s name (the string in it "..." do) to “User can log in
with valid user name and password”.

The first two copied steps:

driver = Selenium::WebDriver.for :chrome;
driver.get("http://travel.agileway.net/login")

start Chrome browser and navigate to our target server. You can delete them if using
TestWise, as they are already included in before(:all) block (created by TestWise in a
more generic format).

First Automated Test 20

Handcraft Scripting

There are a few test steps according to our login test design. Let’s convert them to selenium
steps one by one.
1. Enter username “agileway”.
I will use the ID locator, an easy choice of the element’s ID is present.

driver.find_element(:id, "username").send_keys("agileway")

2. Enter password “testwise”.

driver.find_element(:id, "password").send_keys("testwise'")

3. Click the button “Sign in”.
There is no ID for the ‘Sign in’ button, I use the NAME locator instead.
driver.find_element(:name, "commit").click

The above works, but not a good option (the commit name is not meaningful). For
readers who are familiar with Xpath, the below one is better.

driver.find_element(:xpath, "//input[@value='Sign in']").click

4. Verify: “Welcome agileway” appears.

expect(driver.find_element(:tag_name, "body").text).to include("Welcome
agileway")

Here I used the TAG_NAME locator to get a web page body text for assertions. Don’t
worry about expect syntax, which I will cover later. In the meantime, just to get a feel
of checking in automated test scripts.

5. Click the “Sign off” link.
I used the LINK_TEXT locator here.

driver.find_element(:link, "Sign off").click

Now, review the selenium test steps against your design. It makes sense, isn’t it? One test
script step for each user operation.

First Automated Test 21

In the above five test steps, we used five of Selenium’s eight locators (the new relative
locator, introduced in v4, is rarely used anyway). As a matter of fact, I used only these five
locators for over 95% of the selenium test scripts I wrote. See, Selenium is quite easy to
learn, right?

Beginners commonly mistyped some test steps, that’s normal. There are solutions, such as
using Snippets in TestWise (Chapter 4). In the meantime, try to type the selenium steps
correctly. If frustrated, copy-n-paste from the book source is fine too.

You may run the test case any time during writing a new test script, in fact, I recommend
so. TestWise has several execution modes, the one I showed earlier is called: “Individual
Test Execution”. In this mode, the browser will be kept open after the test case execution
completes. This is a very helpful feature so that we can continue inspect the page in the
browser.

Full Test Script

The test scripts in the TestWise shall be like the below:

load File.dirname(__FILE__) + '/../test_helper.rb'

describe "User Authentication" do
include TestHelper

before(:all) do
browser_type, browser_options, site_url are defined in test_helper.rb
@driver = $driver = Selenium::WebDriver.for(browser_type, browser_options)
driver.manage() .window() .resize_to (1280, 720)
driver.get(site_url)

end

after(:all) do
@driver.quit unless debugging?
end

it "User can login with valid user name and password" do
driver.find_element(:id, "username'").send_keys("agileway")
driver.find_element(:id, "password").send_keys("testwise")

First Automated Test 22

driver.find_element(:name, "commit").click
expect(driver.find_element(:tag_name, "body").text).to include("Welcome agileway")
driver.find_element(:link, "Sign off").click
end
end

2.6 Run the full test in a Chrome browser

Select the Chrome browser icon (default) and press ® on the toolbar (highlighted in the
screenshot below) to run the test case, and you can watch the test execution in a Chrome
window.

AgileTravel - [C\testprojects\AgileTravel\specilogin_spec.rb] - TestWise 6.0.16 - O X
File Edit Search View Mavigate Script Refactor Run Tools Window Help Develop
BE QP02 ¢ =|m[d @ crentre <[b2 @@ @ @ [Q &
PROJECT EXPLORER G (1) login_spec.rb X 25
. =l agiletravel 2 ~
i 3 = describe "User Authentication" do
52) abstract_page.rb N include TestHelper
spec & = before(:all) do
spec_helper.rb 7 # browser_type, browser_options, site firl are defined in test_helper.rb
Q 8 fidriver = $browser = Selenium::WebDrifer.for(browser_type, browser_options)
% Rakefile 9 driver.manage().window().resize_to(1f3e, 728)
@ agiletravel tpr 12 driver.get(site_url)
11 end
agileway_utils.rb 12
F buildwise.rake 12 @ after(:all) do
@ buildwise_rspec_formatter.rtb - 14 driver.quit unless debugging?
(M) test_helperrb 15 end
16
17 B it "User can login with valid user|name and password” do
18 driver.find_element(:id, "usernafpe"”).send_keys(“agileway")
19 driver.find_element(:id, "passwolrd").send_keys("testwise")
28 driver.find_element(:name, "commfit").click
21 expect(dr‘ivar.‘Find_alement(:tag_lnarre, "body™).text).to include("Welcome agileway")
22 driver.find_element(:link_text, ["Sign off").click
23 end
25 end o
Run X Console X
= login_spec Enabled chrome browser debug pert: 19e7e s
X [login_spec.rb:ia] driver.get(site_url)
M Done: 1test (17.7 5] [Test] _ L4 [login_spec.rb:1z2] driver.Findfalementz:id,
"username”).send_keys("agileway™)
Summary Test Qutput [login_s:eé.r‘b:ls] dri\fer.Find_eiement(:id,
Test File Test Case Result Duration “password”).send_keys("testwise”)
R X X : [login_spec.rb:22] driver.find_element(:name,
login_spec.rb User can legin with valid user name and password oK 22 "commit™).click
[login_spec.rb:21]
o~ expect(driver.find_slement(:tag_nams, v
File: C:Mestprojects\AgileTravelspeciogin_s.. Row:1 Col: 1 RSpec : QTest' http:ftravel agileway net

The green tick means the test passed.

You might notice something different from previous test executions: the browser was
closed after the test execution. Yes, this is another TestWise execution mode: “Test Script
Execution”, which executes the test script file (including one or many test cases in it), the
browser will close after the test execution completes.

First Automated Test 23

WebDriver is a W3C standard. All major browsers vendors such as Google, Apple, Microsoft
and Mozilla support WebDriver. For example, you just need to install GeckoDriver® for
Firefox.

Set browser and target URL specifically

Some readers might ask ‘T don’t see the target server URL and Chrome browser being set
in the test script”.

@driver = Selenium::WebDriver.for (browser_type)
@driver.get.to(site_url)

The browser_type and site_url are defined in test_helper.rb, which you can easily
modify. More importantly, with IDE support, you can run tests against another target
server (in Project settings) and browser quickly in IDE. Feel free to change the target
browser to Edge or Safari (provided that the browser and its driver are installed correctly)
and run the test again.

If you want to set the browser type and server URL specifically in each individual test
script, you can.

@driver = Selenium::WebDriver.for(:edge)

2.7 Running on macOS

The test script works on all desktop platforms. Here is what it looks like when this test is run
in TestWise on macOS.

*https://github.com/mozilla/geckodriver/releases

https://github.com/mozilla/geckodriver/releases
https://github.com/mozilla/geckodriver/releases

First Automated Test 24

@® @ chO02-first.tpr - [/Users/zhimin/work/books/Practical WebTestAutomation/sources/ch02-first/spec/login_spec.rb] - TestWise 6.0.19

D @] <N p %— [Ii] Ij éj:_cg \% ;E Env: development Current File D PE @ e @ u N\’:/'

PROJECT EXPLORER C @ login_specrb | () o =
Vv sl ch02-first 4 include TestHelper
i e ” before(:all) d
. 6 O efore(:a o
®
O’E ® abstract_page.rb 7 @driver = $browser = Selenium::WebDriver.for(browser_type)
v &= spec 8 @driver.navigate.to(site_url)
@ 9 end
Q & Rakefile 10
& agileway_utils.rb 1B after‘(:all) ‘.10)
i 12 @driver.quit unless debugging?
@ @ ch02-first.tpr 13 end
& rwebspec_utils.rb 14
E 1) test_helper.rb 15 @ it ['User can login with valid user name and password" do
16 driver.find_element(:id, "username").send_keys("agileway")
17 driver.find_element(:id, "password").send_keys("testwise")
18 driver.find_element(:xpath,"//input[@value="'Sign in']").click
19 expect(page_ext).to include("Welcome agileway")
20 driver.find_element(:link_text, "Sign off").click
21 end

e B T~ Ay Ty e [login_spec.rb:8] @driver.navigate.to(site_url)
* ='User can login with valid user name and password [login_spec.rb:16] driver.find_element(:id,
"username").send_keys("agileway")
»b Done: 1 test (6.8 s) [development] 4 [login_spec.rb:17] driver.find_element(:id,
"password") .send_keys("testwise")
ClnlElA Test Output [login_spec.rb:18]) .
driver.find_element(:xpath,"//input[@value="Sign
Test File Test Case Rest Duration i[;"]'_')-CUCk bass1
. . . . ogin_spec.rb:
login_spec.rb User can login with valid user name and password O 1.7 expect(driver. find_element(: tag_name,

"body").text).to include("Welcome agileway")
[login_spec.rb:20]
driver find alement(:link taxt "Sian aff"™ click

File: /Users/zhimin/work/books/PracticalWebTestAut Row: 15 Col: 6 RSpec 5 J devel http://travel.agi net

2.8 When a test failed...

We just saw a successful automated test execution. Naturally, you will ask what will happen
when a test fails? As a matter of fact, during the development of an automated test script, we
are more likely to get errors or failures before we get it right. It is up to the technical testers
to analyze the cause: is it a real application error or incorrect test scripts?

Next, we will make a simple change to the above test script to make it fail:
driver.find_element(:name, '"password").send_keys("invalid") # will fail

And I want to refine the assertion: checking the specific alert message, rather than verify a
piece of text appearing (anywhere) on the page.

expect(driver.find_element(:id, "flash_alert").text).to eq("Signed in!")

First Automated Test 25

Click * to run the test. As expected, the test failed.

17 2 it "User can login with valid user name and password” do

12 driver.find_element(:id, “username”}.send_keys{"agileway™)

139 driver.find_element(:id, “password”).send_keys{"invalid")

28 driver.find_element(:name, "commit™}.click

1@ expect(driver.find_element(:id, "flash_alert").text).to eq("Signed in!™)

22 driver.find_element(:link_text, "Sign off").click

23 end h
Run x

#E User can login with valid user name and password

bl Done: 1 test (12.4 5), Failed: 1 [Test] _ ®

Summary Test Qutput %
Test File Test Case Result Duraticn
login_spec.rb User can login with valid user name and password Failed 1.2

&

In TestWise, the test execution is marked as “Failed” and @ is shown on line 21 of the test
script indicating where the failure is.

We, as humans, knew the reason for this failure: a wrong password was provided. From the
test script’s “point of view”, it failed due to this assertion was not met: the alert message on

the page is not “Signed in!”.
If you want to find more details about the cause for test failure, check the text output of test
execution including error trace under “Test Output” tab.

Summary Test Qutput

X

Run opticns: include {:locations=:{"./spec/login_spec.rb"=x>[28]}}
F
Failures:
1) Login User can login with valid user name and password
Failure/Error: expect(driver.find_element(:id, "flash_alert™).text).to eq("Signed
expected: "Signed in!™
got: "Invalid email or password™
(compared using ==
./spec/login spec.rb:21:in “block (2 levels) in

In this case, the cause of failure is quite obvious by examining the output.

expected: "Signed in!"
got: "Invalid email or password"’

First Automated Test 26

2.9 Wrap up

Let’s review what we have done in this chapter. Besides the test design, we

Installed TestWise IDE

Installed TestWise Recorder (optional)

Created a test project in TestWise IDE

Recorded test scripts using TestWise Recorder in a Chrome browser (optional)
Created test script from pasted test steps from the recorder, or

Script the selenium test steps manually

Ran test case in a browser (pass and failed)

Hopefully, you were able to do all that within 10 minutes! You can view the screencast for
this exercise online at the book’s website at http://zhimin.com/books/pwta®.

°http://zhimin.com/books/pwta

http://zhimin.com/books/pwta
http://zhimin.com/books/pwta

3. How Automated Testing works

In the previous chapter, we created an automated functional test running in a web browser,
Chrome. This was done by simulating a user interacting with the browser: typing texts and
clicking buttons.

Before we move on, let us examine our test targets - web applications (or websites). Simply
speaking, a web site consists of many web pages. Behind each web page, there is an HTML
(HyperText Markup Language) file. Browsers download the HTML files and render them.

HTML defines a set of standard web controls (aka elements) we are familiar with, such as
text boxes, hyperlinks, buttons, checkboxes, etc. For web application testing, we interact
with these controls as well as the texts that get marked up in the HTML such as labels and
headings.

Now let us review the test script we created in the last exercise:

Story ID: User Story/TestCase

it "[01] User can login" do

driver = Selenium: :WebDriver.for(:chrome)
driver.navigate.to("http://travel.agileway.net")

driver.find_element(:id, "username").send_keys("agileway")

driver.find_element(:id, "password").send_keys("testwise")
driver.find_element(:xpath,"//input[@value="Sign in’]").click

expect(driver.find_element(:tag_name, "body").text).to include("Welcome agileway™)
next test, comments start with ‘#’

Within a test case, test steps can be classified into the following two categories:

+ Operation (also called step)

Performing some kind of keyboard or mouse action on a web page. The above example
test has three operations:

How Automated Testing works 28

driver.find_element(:id, "username'").send_keys("agileway")
driver.find_element(:id, "password").send_keys("testwise")
driver.find_element(:xpath, "//input[@value='Sign in']").click

« Check (also called assertion)

Verifying the web page meets the requirement.

the_page_text = driver.find_element(:tag_name, "body").text
expect(the_page_text).to include("Welcome agileway")

3.1 Web test drivers

Web test drivers enable web controls to be driven by test scripts with a certain syntax, for
testing purposes. All web test drivers covered in this book are free and open-source.

Selenium WebDriver

Selenium was originally created in 2004 by Jason Huggins, who was later joined by his other
ThoughtWorks colleagues. Selenium supports all major browsers and tests can be written in
many programming languages and run on Windows, Linux and Macintosh platforms.

Selenium WebDriver History

Selenium 2 is merged with another test framework WebDriver led by Simon Stewart at
Google (that’s why it is called ‘selenium-webdriver’).

« Selenium 2, released in July 2011
« Selenium 3, released in October 2016
« Selenium 4, released in October 2021

As of August 2022, the current stable version is Selenium 4.4.

Because WebDriver is a W3C standard (the official term is ‘recommendation®’), just like
HTML and XML, your test scripts most likely will work with future Selenium WebDriver
versions.

Here is an example test in Selenium WebDriver:

"https://sfconservancy.org/news/2018/may/31/seleniumW3C/

https://sfconservancy.org/news/2018/may/31/seleniumW3C/
https://sfconservancy.org/news/2018/may/31/seleniumW3C/

How Automated Testing works 29

require "selenium-webdriver"

driver = Selenium::WebDriver.for(:chrome) # or :ie, :firefox, :safari
driver.navigate.to "http://www.google.com"

driver.find_element(:name, "q").send_keys "WebDriver IDE"
driver.find_element(:name, "btnG").click #"btnG" is the 'Search' button

3.2 Automated testing rhythm

Regardless of which test framework you use, the ‘testing rhythm’ is the same:

Identify a web control

Perform an operation on the control
Go to step 1 until reach a checkpoint
Check

Go to step 1 until the test ends

M

Identify web controls

To drive controls on a web page, we need to identify them first.
Let’s look at this sample web page:

User Name:

Password:

Remember me
Sign in

Its HTML source (you can view the HTML source of a web page by right clicking in the web
page and selecting “View Page Source”):

User name: <input type="text" name="username" size="20"/>
Password: <input type="password" id="pwd_box" name="password" size="20"/>
<input type="submit" name="commit" value="Sign 1in"/>

Though the username and password appear the same (text box) on the browser, they are
quite different in the source. Some attributes in HTML tags tell web browsers how to render

How Automated Testing works 30

it, such as size="20" in the user name text box. More importantly, application developers
use attributes such as "name" (not exclusively) to determine the user’s input associated with
which control.

We can identify web controls by using these attributes for testing. Here is one way to identify
them in Selenium:

driver.find_element(:name, "username")
driver.find_element(:id, "pwd_box")
driver.find_element(:xpath, "//input[@value='Sign in']")

As you can see, these three test steps use three different attributes for three controls.

Obviously the easiest way to identify web controls is to use a recorder (a tool records user’s
operation and generate test scripts), if you have one installed. However, in my opinion, it is
essential for technical testers to master and be comfortable to do it manually. The reasons
are:

+ Some test frameworks don’t have recorders or have outdated ones
« Recorders might not work for certain circumstances
+ Lack of freedom on choosing preferred attribute (for identifying controls)

In modern browsers, it is actually quite easy to identify element attributes (in HTML source)
manually: just right-click Right-click on any page element and select Inspect Element.

|

800 / (:)travellagileway.nel,flogin

= C' (@) travel.agileway.net/login o

Agile Travel

User Name:
input#user_session_login 175px=189px
omTE

[_IRemember me

| Lf_él Elements | B Resources » Q

 » Computed Styl_| Show inherited
<input id="user_session_login" — .
name="user_session[login]" s + B 8
size="38" twoe="text"s> element.style {

body = #container form | div | #login-box | p WIS TECTEEEEANT N LTE T

> |

B > o 8 <topframe> 3| (=l Errors Warnings Logs ﬁ

How Automated Testing works 31

Drive web controls

Once we have identified a web control, the next step is to perform a required operation with
it, such as typing text in a text field, clicking for a button, clearing a checkbox, and so on.
Though different test frameworks have different syntax, the idea is the same.

Here are some examples:

driver.find_element(:name, "user[name]").send_keys "bob"
driver.find_element(:id, "next_btn").click

Check

The purpose of testing is to verify that a piece of function serves its purpose. After ‘driving’
the application to a certain point, we do checks (maybe that’s why it is called ‘checkpoint’
in some testing tools).

In the context of web testing, typical checks are:

« verify certain texts are present

« verify certain HTML fragment are present (different from the above, this is to check
raw page source)

« verify page title

« verify a link is present

« verify a web control is present or hidden

One key feature of Test frameworks (more in the next section) is to provide syntax
conventions to perform verifications as above. Here are some examples:

« xUnit (assertion style)

assert browser.html.include? ("Payment Successful!'")
assert browser.button(:text, '"Choose Selenium").enabled?
assert browser.title == "User Registration"

» RSpec

expect(driver.page_source).to include("Payment Successful!")
expect(browser.find_element(:link_text, "Continue'").displayed?).to be_truthy
expect(driver.title).to eq("User Registration")

How Automated Testing works 32

3.3 Test frameworks

Web test drivers, such as Selenium WebDriver, drive browsers. However, to make effective
use of them for testing, we need to put them in a test framework that defines test structures
and provides assertions (performing checks in test scripts).

xUnit

xUnit (JUnit and its cousins) test frameworks are widely used for unit testing by program-
mers. xUnit can be used in functional test scripts too, but it is not my preference, as it is not
as expressive as the ones below.

RSpec

RSpec is a popular Behaviour Driven Development (BDD) framework in Ruby.
More expressive

Comparing to xUnit test frameworks, RSpec tests are easier to read. For example, for the
JUnit test below:

class UserAuthenticationTest {
public void testCanLoginWithValidUsernameAndPassword {
/] ...
}
public void testAccessDeniedForInvalidPassword() {
/] ...
}

Its RSpec version will be like this:

How Automated Testing works 33

describe "User Authentication" do
it "User can login with valid login and password" do
#
end

it "Access denied for dinvalid password" do
#...
end
end

Execution Hooks

Execution hooks are similar to setUp () and tearDown () functions in JUnit. Test steps inside
a execution hook are run before or after test cases depending on the nature of the hook. The
example below shows the order of execution in RSpec:

describe "Execution Order Demo" do

before(:all) do
puts "Calling before(:all)"
end

before(:each) do
puts " Calling before(:each)"
end

after(:each) do
puts " Calling after(:each)"
end

after(:all) do
puts "Calling after(:all)"
end

it "First Test Case" do
puts " In First Test Case"
end

it "Second Test Case" do
puts " In Second Test Case"

end

end

How Automated Testing works 34

Output

Calling before(:all)
Calling before(:each)
In First Test Case
Calling after(:each)
Calling before(:each)
In Second Test Case
Calling after(:each)
Calling after(:all)

What is the use of execution hooks? Let’s look at the test script below (the test script is in
RWebSpec, an extension of Selenium WebDriver. please examine the structure of test scripts
rather than test statement syntax, for now). There are three login related test cases in a single
test script file.

describe "User Login" do
include TestHelper # defined functions such as open_browser, login_as

it "Can login as Registered User" do
open_browser
login_as("james", '"pass'")
expect(page_text).to include("Welcome James")
logout
close_browser

end

it "Can login as Guest" do
open_browser
login_as("guest", '"changeme")
expect(page_text).to include("Login OK")
logout
close_browser

end

it "Can login as Administrator" do
open_browser
login_as("admin", "secret")
assert_Llink_present_with_text("Settings")
logout
close_browser

end

How Automated Testing works 35

end

By utilizing execution hooks, we can refine these test cases to:

describe "User Login" do
include TestHelper

before(:all) do
open_browser
end

after(:each) do
logout
end

after(:all) do
close_browser
end

it "Can login as Registered User" do
login_as("james", '"pass'")
expect(page_text).to include("Welcome James")
end

it "Can login as Guest" do
login_as("guest", '"changeme'")
expect(page_text).to include("Login OK")
end

it "Can login as Administrator" do
login_as("admin", "secret")
assert_link_present_with_text("Settings")
end

end

By utilizing RSpec’s before(:all), after (:each) and after (:all) hooks, this version is
not only more concise, more importantly, every test case is now more focused (distinguished
from each other). Using these hooks effectively will make test scripts more readable and
easier to maintain. For readers who are new to RSpec, don’t worry, I will cover it more in
later chapters.

How Automated Testing works 36

Cucumber

Cucumber, another relatively new BDD framework in Ruby, is gaining popularity rapidly.
To avoid distractions, we will focus on test practices using Selenium-WebDriver + RSpec.
There will be a dedicated chapter on Cucumber towards the end of this book.

3.4 Run tests from the command line

In Chapter 2, we created an automated test script using a recorder and ran the test from
TestWise.

One advantage of open-source test frameworks, such as Selenium WebDriver, is freedom.
You can edit the test scripts in any text editor and run them from command line.

You need to install Ruby first, then install RSpec and preferred web test driver and library
(called Gem in Ruby). Basic steps are:

1. Install Ruby interpreter
« Mac

Ruby is already included in macOS. You may use rbenv or rvm to install a specific
Ruby version.

e Linux

Use standard package tool to install, usually just one command such as
sudo apt install ruby-full on Ubuntu.

« Windows

Download RubyInstaller for Windows? with Devkit, such as ‘Ruby+Devkit 2.7.6-1
(x64)’. The DevKit is required for compiling certain libraries (called Gem in Ruby).

Run the installer, don’t forget the DevKit setup part.

2. Install libraries (gems)

*https://rubyinstaller.org/

https://rubyinstaller.org/
https://rubyinstaller.org/

How Automated Testing works 37

> gem install selenium-webdriver
> gem install rspec
> gem install ci_reporter

3. Install Browser drivers (such as ChromeDriver for Chrome)

A browser driver is one executable file (easier to install, see below) provided by browser
vendors, such as ChromeDriver® for Chrome. Selenium scripts call it to drive the
browser.

+ go to ChromeDriver site*

« Download the one for your target platform, unzip it and put chromedriver
executable in your PATH.

Make sure the driver version matches your Chrome browser’s version. Drop the
executable (chromedriver.exe on Windows) into a folder in your PATH, for example,
C:\Ruby27-x64\bin.

To verify the installation, open a command window (terminal for Unix/Mac), execute
command chromedriver --version, You shall see texts like below:

ChromeDriver 104.0.5112.79

To run tests in a different type of browser, install its matching driver, such as GeckoDriver
for Firefox. Selenium site® has the details for all browser types.

Once the installation (takes about 1 minute) is complete, we can run a RSpec test from the
command line. you need to have some knowledge of typing commands in console (called
Command on Windows).

To run test cases in a test script file, enter the command
> rspec google_spec.rb

Run multiple test script files in one go:

> rspec first_spec.rb second_spec.rb

Run individual test case in a test script file, supply a line number in the chosen test case
range.

*https://chromedriver.chromium.org/downloads
“https://sites.google.com/a/chromium.org/chromedriver/downloads
*https://selenium.dev/downloads

https://chromedriver.chromium.org/downloads
https://sites.google.com/a/chromium.org/chromedriver/downloads
https://selenium.dev/downloads
https://chromedriver.chromium.org/downloads
https://sites.google.com/a/chromium.org/chromedriver/downloads
https://selenium.dev/downloads

How Automated Testing works

> rspec google_spec.rb:30
To generate a test report (HTML) after test execution:
> rspec -fh google_spec.rb > test_report.html

The command syntax is the same for Mac OS X and Linux platforms.

38

4. TestWise - Functional Testing IDE

In Chapter 2, we wrote a simple automated test case using TestWise, a functional testing
Integration Development Environment (IDE). Selenium WebDriver test scripts can be
developed in any text-based editors or IDEs. You can safely skip this chapter if you had
decided the tool. Readers, who want to be more productive with TestWise, might find this
chapter useful.

4.1 Philosophy of TestWise

The Philosophy of TestWise:

+ “The Power of Text”
« “Convention over Configuration”
« Simplicity

The Power of Text (inspired from the classic book Pragmatic Programmers)

Unlike some testing tools, the main window of TestWise is a text-based editor, with various
testing functions such as test execution, test refactoring, test navigation, etc. The benefits of
using plain text (test scripts):

« Use of Source Control system to track revision and compare differences

« Powerful text editing, such as Snippets

« Search and replace, even across multiple files in project scope

+ Refactoring (we will cover this in a later chapter)

« Easy view or edit using any text editors without dependency on the proprietary tool

Convention over Configuration (inspired from popular Ruby on Rails framework)

The principle of “Convention over Configuration” is gaining more acceptance with the
success of Ruby on Rails framework. It makes sense for writing automated tests as well.
In the context of testing, with conventions in place, when a tester opens a new test project,
she/he should feel comfortable and can get to work straightaway.

TestWise defines simple conventions for the test project structure, test file naming and page
classes, as you will see later in this chapter. This helps communication among team members
or seeking help externally when necessary.

TestWise - Functional Testing IDE 40

Simplicity
TestWise is designed from the ground up to suit testers, without compromises often found

in testing tools that are based on programming IDEs (which are designed for programmers).
Every feature in TestWise has one single purpose: a better testing experience.

To make new-to-automation testers more willing to adopt, TestWise is designed to be easy
to install, launch quickly and get you started in minutes.

Next-Generation Functional Testing Tool

In October 2007, The Agile Alliance held a Functional Testing Tools Visioning Workshop
to envision the next-generation of functional testing tools: “We are lacking integrated
development environments that facilitate things like: refactoring test elements, command
completion, incremental syntax validation (based on the domain specific test language),
keyboard navigation into the supporting framework code, debugging, etc.” [AAFTT07]

TestWise was designed and implemented before the workshop, but shares the same vision.

4.2 TestWise project structure

The project structure in TestWise is simple.

=izl agiletravel-selenium-webdriver
4.0 pages

----- B abstract_page.rb

..... B flight_page.rb

..... B login_page.rb

..... P) passenger_page.rb

o spec

..... (T) flight_spec.rb

..... (@) login_spec.rb

..... (T) passenger_spec.rb

..... H) spec_helperrb

----- testdata

----- < Rakefile

..... agiletravel-selenium-webdriver.tpr
..... S agileway_utils.rb

..... H) test_helperrb

There are several file types distinguished by icons in TestWise:

TestWise - Functional Testing IDE 41

@ Test script files (xxx_spec.rb)
One test script file may contain one or more test cases (the extension “rb’ means it is
a Ruby script file).

® Page class files (xxx_page.rb under pages folder)
A Page Class is a reusable Ruby class representing a web page, we will cover it in detail
in the next chapter.

“ Test Helper (test_helper.rb)
Common reusable functions are defined in Test Helper. It is included at the beginning
of all test script files and the functions are available for all tests.

Project file (xxx.tpr)
Store project settings. To open a TestWise project, look for a xxx.tpr file.

& Rakefile
Configuration file for Rake build language (equivalent to build.xml for Ant), which
can be used to execute all or a custom suite of test cases.

Test data (under /testdata folder, optional)
The place to put your test data.

4.3 Test execution

Test execution, obviously, is the most important feature for testing tools. TestWise offers
several ways to run tests.

Run test cases in a test script file (F10)

P A test script file may contain one or more test cases that commonly form a logic group.

Run individual test case (Shift+F10)

#2 When developing or debugging (trying to find out what went wrong) a new test case,
you can just run this single test case and leave the web browser at the state when an error
occurred for analyse. And yes, this is the most frequently used method for executing tests.

TestWise - Functional Testing IDE 42

Run All Tests in folder

= Also you can run all tests under a folder. Invoke via the context menu from right-clicking
a test folder.

However, I discourage running tests this way. It is not practical to do so when you have many
tests, let’s say, over 100. Instead, we shall run a suite of tests in a Continous Testing process,
so that we may continue to develop/fix/debug tests in TestWise while the test execution is
happening on another machine. We will cover this in Chapter 11.

4.4 Keyboard navigation

One criterion identified by Agile Alliance work for Next-Gen Functional Testing tools is
“keyboard navigation into the supporting framework code”. Those who are used to operating
with a mouse all the time might find ‘keyboard navigation’ is just a matter of personal
preference, and wonder how it is made into the list?

For any projects that are doing serious automated testing, there will be a large number of test
scripts. When the number is big, being able to find the test case quickly, keyboard navigation
becomes more than just a convenience.

Go to Test Script File (CtrI+T)

| = GotoFile X

logil

| el login_page.rb

(T) login_specrb

Go to Test Case (Ctrl+Shift+T)

| 4 Go to Test X

trip]
|-) [2] One-way trip
(T) [3] Return trip

TestWise - Functional Testing IDE 43

Rocky’s mouse

Once I worked with a tester nicknamed Rocky who was in his fifties. Despite many doubts,
he fell in love with automated testing quickly. He developed RSI (Repetitive Strain Injury,
a potentially disabling illness caused by prolonged repetitive hand movements) with his
mouse hand. Certainly years of the using computer mice had contributed to that. When
we worked together on test cases, I moved the mouse to the far right side and sometimes
even put a piece of paper between him and the mouse. Changing a habit is never easy, but
Rocky was doing admirably well. Weeks later, Rocky used the keyboard more than the
mouse and felt more productive as a result. Months later after I left the project, I met one
of his colleagues, who told me: he saw Rocky once snapped the mouse on his desk, and
said to himself: “Zhimin said not to use it”.

4.5 Snippets

Snippets in TestWise are small bits of text that expand into full test script statements. The use
of snippets helps to create test steps more effectively when crafted manually. For example,
type ‘dfel’ then press Tab key in a script editor, TestWise will expand it into the test
statement below (clicking a hyperlink):

dfel Tabj driver.find element(:1link_ text, "Link")

There are two ways to insert a snippet:

« Enter snippet abbreviation and press Tab key, or
« Press ‘Ctrl+]” and select from the list, or type to narrow down the selection.

After a snippet is expanded, you may type over the highlighted text and press Tab to move
to the next one if there is any. For example, type “Sign off” then press Tab key, the cursor
will move to the end of the line. Type . and select click to complete this test statement.

driver.find_element(:1link_text, "Sign off") .ch

o clear

TestWise - Functional Testing IDE 44

4.6 Script library

For testers who are new to the test framework and do not know the script syntax, may have
many ‘how-to’ questions such as: What is the test script syntax for clicking a button?, How
to assert the checkbox is checked?, etc. TestWise’s built-in script library can provide the
answers.

ece e L'El@ o

Script Library x

Selenium || Q select

|: select option by label

= select option by value
= select option by index

Selenium: :WebDriver: :Support: :Select.new(
driver.find_element(:name, "MAME")).select_by(
rtext, "LABEL")

Code Snippet: dsot Insert

4.7 Test refactoring

Test Refactoring is a process of refining test scripts to make it easier to read, and more
importantly, easier to maintain. One unique feature of TestWise is its refactoring support,
performing test refactoring efficiently and reliably.

We will cover this important topic in later chapters.

4.8 Wrap up

We have quickly introduced some features of TestWise to help you develop test scripts more
efficiently. For more details, please check TestWise online documentation and screencasts.

5. Case Study

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/practical-web-test-automation.

5.1 Test site

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/practical-web-test-automation.

5.2 Preparation

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/practical-web-test-automation.

5.3 Create a test project

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/practical-web-test-automation.

5.4 Test Suite: Sign in

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/practical-web-test-automation.

Positive Case: User can sign in OK

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/practical-web-test-automation.

http://leanpub.com/practical-web-test-automation
http://leanpub.com/practical-web-test-automation
http://leanpub.com/practical-web-test-automation
http://leanpub.com/practical-web-test-automation
http://leanpub.com/practical-web-test-automation
http://leanpub.com/practical-web-test-automation

Case Study 46

Test Case Design

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/practical-web-test-automation.

Typing the test steps in TestWise Editor

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/practical-web-test-automation.

Negative Case: User failed to sign in due to invalid password

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/practical-web-test-automation.

Run all test cases in the login_spec.rb

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/practical-web-test-automation.

5.5 Test Suite: Select Flights

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/practical-web-test-automation.

Case 1: One-way trip

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/practical-web-test-automation.

Case 2: Return trip

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/practical-web-test-automation.

http://leanpub.com/practical-web-test-automation
http://leanpub.com/practical-web-test-automation
http://leanpub.com/practical-web-test-automation
http://leanpub.com/practical-web-test-automation
http://leanpub.com/practical-web-test-automation
http://leanpub.com/practical-web-test-automation
http://leanpub.com/practical-web-test-automation

Case Study 47

Technique: use execution hooks

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/practical-web-test-automation.

Technique: check dynamic Ul

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/practical-web-test-automation.

5.6 Enter passenger details

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/practical-web-test-automation.

5.7 Book confirmation after payment

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/practical-web-test-automation.

Technique: Testing AJAX

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/practical-web-test-automation.

Technique: Displaying value from specific HTML element in
console

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/practical-web-test-automation.

5.8 Run all tests

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/practical-web-test-automation.

http://leanpub.com/practical-web-test-automation
http://leanpub.com/practical-web-test-automation
http://leanpub.com/practical-web-test-automation
http://leanpub.com/practical-web-test-automation
http://leanpub.com/practical-web-test-automation
http://leanpub.com/practical-web-test-automation
http://leanpub.com/practical-web-test-automation

Case Study 48

5.9 Wrap up

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/practical-web-test-automation.

http://leanpub.com/practical-web-test-automation

6. Maintainable Functional Test
Design

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/practical-web-test-automation.

6.1 Record/Playback leads to unmaintainable test
scripts

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/practical-web-test-automation.

Record, Refine, Run

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/practical-web-test-automation.

6.2 Success criteria

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/practical-web-test-automation.

Intuitive to read

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/practical-web-test-automation.

Easy to update

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/practical-web-test-automation.

http://leanpub.com/practical-web-test-automation
http://leanpub.com/practical-web-test-automation
http://leanpub.com/practical-web-test-automation
http://leanpub.com/practical-web-test-automation
http://leanpub.com/practical-web-test-automation
http://leanpub.com/practical-web-test-automation

Maintainable Functional Test Design 50

6.3 Maintainable automated test design

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/practical-web-test-automation.

Reusable function

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/practical-web-test-automation.

Page Object

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/practical-web-test-automation.

6.4 Maintain with ease

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/practical-web-test-automation.

6.5 Case Study: refine test scripts

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/practical-web-test-automation.

DRY with Reusable Functions

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/practical-web-test-automation.

Parameterizing functions

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/practical-web-test-automation.

http://leanpub.com/practical-web-test-automation
http://leanpub.com/practical-web-test-automation
http://leanpub.com/practical-web-test-automation
http://leanpub.com/practical-web-test-automation
http://leanpub.com/practical-web-test-automation
http://leanpub.com/practical-web-test-automation
http://leanpub.com/practical-web-test-automation

Maintainable Functional Test Design 51

DRY with Page Objects

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/practical-web-test-automation.

6.6 Wrap Up

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/practical-web-test-automation.

http://leanpub.com/practical-web-test-automation
http://leanpub.com/practical-web-test-automation

7. Test Automation Characteristics

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/practical-web-test-automation.

7.1 Specific

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/practical-web-test-automation.

7.2 Clean

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/practical-web-test-automation.

7.3 Independent

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/practical-web-test-automation.

7.4 Frequent

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/practical-web-test-automation.

Frequency as the needs

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/practical-web-test-automation.

http://leanpub.com/practical-web-test-automation
http://leanpub.com/practical-web-test-automation
http://leanpub.com/practical-web-test-automation
http://leanpub.com/practical-web-test-automation
http://leanpub.com/practical-web-test-automation
http://leanpub.com/practical-web-test-automation

Test Automation Characteristics 53

Frequency as the outcome

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/practical-web-test-automation.

7.5 Focused

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/practical-web-test-automation.

7.6 Programmable

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/practical-web-test-automation.

7.7 Creative

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/practical-web-test-automation.

7.8 Sustainable

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/practical-web-test-automation.

7.9 Wrap up

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/practical-web-test-automation.

http://leanpub.com/practical-web-test-automation
http://leanpub.com/practical-web-test-automation
http://leanpub.com/practical-web-test-automation
http://leanpub.com/practical-web-test-automation
http://leanpub.com/practical-web-test-automation
http://leanpub.com/practical-web-test-automation

8. Functional Test Refactoring

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/practical-web-test-automation.

8.1 Code refactoring

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/practical-web-test-automation.

8.2 Functional test refactoring

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/practical-web-test-automation.

8.3 Tool support

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/practical-web-test-automation.

8.4 Case study

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/practical-web-test-automation.

Extract “sign in” function

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/practical-web-test-automation.

http://leanpub.com/practical-web-test-automation
http://leanpub.com/practical-web-test-automation
http://leanpub.com/practical-web-test-automation
http://leanpub.com/practical-web-test-automation
http://leanpub.com/practical-web-test-automation
http://leanpub.com/practical-web-test-automation

Functional Test Refactoring 55

Extract “sign off” function

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/practical-web-test-automation.

Extract FlightPage

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/practical-web-test-automation.

Extract PassengerPage

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/practical-web-test-automation.

Extract PaymentPage

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/practical-web-test-automation.

Move function to test helper

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/practical-web-test-automation.

Move to execution hooks

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/practical-web-test-automation.

Full test scripts

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/practical-web-test-automation.

8.5 Summary

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/practical-web-test-automation.

http://leanpub.com/practical-web-test-automation
http://leanpub.com/practical-web-test-automation
http://leanpub.com/practical-web-test-automation
http://leanpub.com/practical-web-test-automation
http://leanpub.com/practical-web-test-automation
http://leanpub.com/practical-web-test-automation
http://leanpub.com/practical-web-test-automation
http://leanpub.com/practical-web-test-automation

9. Review

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/practical-web-test-automation.

9.1 Syntax errors

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/practical-web-test-automation.

How to avoid?

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/practical-web-test-automation.

9.2 Set up source control

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/practical-web-test-automation.

Git Installation

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/practical-web-test-automation.

Set up Git for local working folder

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/practical-web-test-automation.

http://leanpub.com/practical-web-test-automation
http://leanpub.com/practical-web-test-automation
http://leanpub.com/practical-web-test-automation
http://leanpub.com/practical-web-test-automation
http://leanpub.com/practical-web-test-automation
http://leanpub.com/practical-web-test-automation

Review 57

Set up Git for a shared folder on the network drive

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/practical-web-test-automation.

Frequently used Git commands after set up

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/practical-web-test-automation.

9.3 GUI Object Map

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/practical-web-test-automation.

9.4 Custom libraries

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/practical-web-test-automation.

9.5 Debugging

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/practical-web-test-automation.

9.6 Cross-browser functional testing

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/practical-web-test-automation.

9.7 Data-Driven Test

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/practical-web-test-automation.

http://leanpub.com/practical-web-test-automation
http://leanpub.com/practical-web-test-automation
http://leanpub.com/practical-web-test-automation
http://leanpub.com/practical-web-test-automation
http://leanpub.com/practical-web-test-automation
http://leanpub.com/practical-web-test-automation
http://leanpub.com/practical-web-test-automation

Review 58

9.8 What is the best learning method?

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/practical-web-test-automation.

http://leanpub.com/practical-web-test-automation

10. Collaboration

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/practical-web-test-automation.

10.1 Pre-requisite

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/practical-web-test-automation.

Version Control Server

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/practical-web-test-automation.

Same Testing Tool

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/practical-web-test-automation.

10.2 Scenario 1: “It worked on my machine”

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/practical-web-test-automation.

Benefits

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/practical-web-test-automation.

http://leanpub.com/practical-web-test-automation
http://leanpub.com/practical-web-test-automation
http://leanpub.com/practical-web-test-automation
http://leanpub.com/practical-web-test-automation
http://leanpub.com/practical-web-test-automation
http://leanpub.com/practical-web-test-automation

Collaboration 60

10.3 Scenario 2: Synergy

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/practical-web-test-automation.

Benefits

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/practical-web-test-automation.

10.4 Scenario 3: Acceptance Test-Driven
Development

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/practical-web-test-automation.

Benefits

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/practical-web-test-automation.

10.5 Wrap up

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/practical-web-test-automation.

http://leanpub.com/practical-web-test-automation
http://leanpub.com/practical-web-test-automation
http://leanpub.com/practical-web-test-automation
http://leanpub.com/practical-web-test-automation
http://leanpub.com/practical-web-test-automation

11. Continuous Integration with
Functional Tests

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/practical-web-test-automation.

11.1 Long feedback loop

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/practical-web-test-automation.

11.2 Continuous Integration

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/practical-web-test-automation.

11.3 Continuous Integration and Testing

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/practical-web-test-automation.

11.4 Cl build steps

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/practical-web-test-automation.

http://leanpub.com/practical-web-test-automation
http://leanpub.com/practical-web-test-automation
http://leanpub.com/practical-web-test-automation
http://leanpub.com/practical-web-test-automation
http://leanpub.com/practical-web-test-automation

Continuous Integration with Functional Tests 62

11.5 Functional Ul testing build step with Rake

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/practical-web-test-automation.

Run selected tests

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/practical-web-test-automation.

Run all tests

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/practical-web-test-automation.

11.6 Set up a Continuous Testing server: BuildWise

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/practical-web-test-automation.

Objective

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/practical-web-test-automation.

Prerequisite

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/practical-web-test-automation.

Install BuildWise server

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/practical-web-test-automation.

http://leanpub.com/practical-web-test-automation
http://leanpub.com/practical-web-test-automation
http://leanpub.com/practical-web-test-automation
http://leanpub.com/practical-web-test-automation
http://leanpub.com/practical-web-test-automation
http://leanpub.com/practical-web-test-automation
http://leanpub.com/practical-web-test-automation

Continuous Integration with Functional Tests 63

11.7 Create a Build Project

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/practical-web-test-automation.

11.8 Trigger test execution manually

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/practical-web-test-automation.

11.9 Feedback while test execution in progress

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/practical-web-test-automation.

11.10 Build finished

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/practical-web-test-automation.

11.11 Exercise: Set up CT for your own project

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/practical-web-test-automation.

11.12 Review

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/practical-web-test-automation.

http://leanpub.com/practical-web-test-automation
http://leanpub.com/practical-web-test-automation
http://leanpub.com/practical-web-test-automation
http://leanpub.com/practical-web-test-automation
http://leanpub.com/practical-web-test-automation
http://leanpub.com/practical-web-test-automation

12. Test Reporting

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/practical-web-test-automation.

12.1 Reporting automated test results

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/practical-web-test-automation.

12.2 Defect tracking

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/practical-web-test-automation.

12.3 Requirement traceability

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/practical-web-test-automation.

Traceability matrix

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/practical-web-test-automation.

Traceability with BuildWise

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/practical-web-test-automation.

http://leanpub.com/practical-web-test-automation
http://leanpub.com/practical-web-test-automation
http://leanpub.com/practical-web-test-automation
http://leanpub.com/practical-web-test-automation
http://leanpub.com/practical-web-test-automation
http://leanpub.com/practical-web-test-automation

Test Reporting 65

Prerequisite

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/practical-web-test-automation.

Generate Traceability Matrix

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/practical-web-test-automation.

http://leanpub.com/practical-web-test-automation
http://leanpub.com/practical-web-test-automation

13. WebDriver Backed variants

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/practical-web-test-automation.

13.1 Watir

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/practical-web-test-automation.

Invoke Selenium WebDriver directly in Watir

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/practical-web-test-automation.

13.2 RWebSpec

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/practical-web-test-automation.

Invoke Selenium WebDriver underneath in RWebSpec

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/practical-web-test-automation.

13.3 Capybara

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/practical-web-test-automation.

http://leanpub.com/practical-web-test-automation
http://leanpub.com/practical-web-test-automation
http://leanpub.com/practical-web-test-automation
http://leanpub.com/practical-web-test-automation
http://leanpub.com/practical-web-test-automation
http://leanpub.com/practical-web-test-automation

WebDriver Backed variants 67

Invoke Selenium WebDriver underneath in Capybara

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/practical-web-test-automation.

13.4 Test design with Watir, RWebSpec and
Capybara

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/practical-web-test-automation.

Watir with RSpec

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/practical-web-test-automation.

Test script (Watir)

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/practical-web-test-automation.

Reusable functions in test_helper (Watir)

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/practical-web-test-automation.

Page classes (Watir)

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/practical-web-test-automation.

RWebSpec

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/practical-web-test-automation.

http://leanpub.com/practical-web-test-automation
http://leanpub.com/practical-web-test-automation
http://leanpub.com/practical-web-test-automation
http://leanpub.com/practical-web-test-automation
http://leanpub.com/practical-web-test-automation
http://leanpub.com/practical-web-test-automation
http://leanpub.com/practical-web-test-automation

WebDriver Backed variants 68

Test script (RWebSpec)

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/practical-web-test-automation.

Reusable functions in test_helper (RWebSpec)

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/practical-web-test-automation.

Page classes (RWebSpec)

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/practical-web-test-automation.

Capybara with RSpec

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/practical-web-test-automation.

Test script (Capybara)

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/practical-web-test-automation.

Reusable functions in test_helper (Capybara)

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/practical-web-test-automation.

Page classes (Capybara)

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/practical-web-test-automation.

13.5 Review

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/practical-web-test-automation.

http://leanpub.com/practical-web-test-automation
http://leanpub.com/practical-web-test-automation
http://leanpub.com/practical-web-test-automation
http://leanpub.com/practical-web-test-automation
http://leanpub.com/practical-web-test-automation
http://leanpub.com/practical-web-test-automation
http://leanpub.com/practical-web-test-automation
http://leanpub.com/practical-web-test-automation

14. Cucumber

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/practical-web-test-automation.

14.1 Cucumber framework

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/practical-web-test-automation.

Create Selenium-Cucumber Test Project

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/practical-web-test-automation.

Raw Selenium-WebDriver in Cucumber

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/practical-web-test-automation.

Use functions and page objects in Cucumber

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/practical-web-test-automation.

Refactoring: Introduce Page Object

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/practical-web-test-automation.

http://leanpub.com/practical-web-test-automation
http://leanpub.com/practical-web-test-automation
http://leanpub.com/practical-web-test-automation
http://leanpub.com/practical-web-test-automation
http://leanpub.com/practical-web-test-automation
http://leanpub.com/practical-web-test-automation

Cucumber 70

Run Cucumber tests from the command line

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/practical-web-test-automation.

14.2 Comparison: RSpec and Cucumber

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/practical-web-test-automation.

14.3 RSpec and Cucumber co-exist

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/practical-web-test-automation.

http://leanpub.com/practical-web-test-automation
http://leanpub.com/practical-web-test-automation
http://leanpub.com/practical-web-test-automation

15. Adopting Test Automation

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/practical-web-test-automation.

15.1 Seek executive sponsorship

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/practical-web-test-automation.

Benefit realization

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/practical-web-test-automation.

Software maintenance

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/practical-web-test-automation.

15.2 Choose test framework

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/practical-web-test-automation.

15.3 Select test tool

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/practical-web-test-automation.

http://leanpub.com/practical-web-test-automation
http://leanpub.com/practical-web-test-automation
http://leanpub.com/practical-web-test-automation
http://leanpub.com/practical-web-test-automation
http://leanpub.com/practical-web-test-automation
http://leanpub.com/practical-web-test-automation

Adopting Test Automation 72

Run as part of Build Process

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/practical-web-test-automation.

15.4 Find a mentor

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/practical-web-test-automation.

15.5 Manage expectation

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/practical-web-test-automation.

15.6 Solo test automation

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/practical-web-test-automation.

15.7 Common mistakes

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/practical-web-test-automation.

Aiming too long

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/practical-web-test-automation.

Juggling with test frameworks

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/practical-web-test-automation.

http://leanpub.com/practical-web-test-automation
http://leanpub.com/practical-web-test-automation
http://leanpub.com/practical-web-test-automation
http://leanpub.com/practical-web-test-automation
http://leanpub.com/practical-web-test-automation
http://leanpub.com/practical-web-test-automation
http://leanpub.com/practical-web-test-automation

Adopting Test Automation 73

Overestimate test automation effort

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/practical-web-test-automation.

Underestimate test automation effort

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/practical-web-test-automation.

Managers/Developers think “maintaining automated tests
slows down the development”

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/practical-web-test-automation.

No Test Automation Mentors

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/practical-web-test-automation.

Lack of Continuous Integration Process

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/practical-web-test-automation.

15.8 Wrap up

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/practical-web-test-automation.

http://leanpub.com/practical-web-test-automation
http://leanpub.com/practical-web-test-automation
http://leanpub.com/practical-web-test-automation
http://leanpub.com/practical-web-test-automation
http://leanpub.com/practical-web-test-automation
http://leanpub.com/practical-web-test-automation

Appendix 1 Functional Test
Refactoring Catalog

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/practical-web-test-automation.

Move Test Scripts

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/practical-web-test-automation.

Extract Function

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/practical-web-test-automation.

Move Function to Helper

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/practical-web-test-automation.

Extract to Page Class

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/practical-web-test-automation.

Introduce Page Object

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/practical-web-test-automation.

http://leanpub.com/practical-web-test-automation
http://leanpub.com/practical-web-test-automation
http://leanpub.com/practical-web-test-automation
http://leanpub.com/practical-web-test-automation
http://leanpub.com/practical-web-test-automation
http://leanpub.com/practical-web-test-automation

Appendix 1 Functional Test Refactoring Catalog 75

Rename

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/practical-web-test-automation.

http://leanpub.com/practical-web-test-automation

Appendix 2 Case Study: Test
Automation in ClinicWise project

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/practical-web-test-automation.

Build Stats

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/practical-web-test-automation.

Over 612,000 test executions over 7 years

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/practical-web-test-automation.

609 comprehensive automated Ul test cases

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/practical-web-test-automation.

Build time

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/practical-web-test-automation.

Test Automation enables Agile

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/practical-web-test-automation.

http://leanpub.com/practical-web-test-automation
http://leanpub.com/practical-web-test-automation
http://leanpub.com/practical-web-test-automation
http://leanpub.com/practical-web-test-automation
http://leanpub.com/practical-web-test-automation
http://leanpub.com/practical-web-test-automation

Appendix 2 Case Study: Test Automation in ClinicWise project 77

Stage 1: Write automated tests on the first day

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/practical-web-test-automation.

Stage 2: Set up Cl server within the first week

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/practical-web-test-automation.

Stage 3: Release to production early

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/practical-web-test-automation.

Stage 4: Release often (daily)

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/practical-web-test-automation.

Stage 5: Set up parallel test execution in CI

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/practical-web-test-automation.

Questions and Answers

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/practical-web-test-automation.

http://leanpub.com/practical-web-test-automation
http://leanpub.com/practical-web-test-automation
http://leanpub.com/practical-web-test-automation
http://leanpub.com/practical-web-test-automation
http://leanpub.com/practical-web-test-automation
http://leanpub.com/practical-web-test-automation

Resources

This content is not available in the sample book. The book can be purchased on Leanpub at
http://leanpub.com/practical-web-test-automation.

Books

« Practical Continuous Testing' by Zhimin Zhan

The second book of “Practical” series, focuses on how to effectively execute automated
functional tests in a Continuous Testing server.

« Practical Desktop App Test Automation with Appium?® by Zhimin Zhan

Automating Desktop apps on Windows using Appium framework, using the same test
design and practices in this book.

+ Selenium WebDriver Recipes in Ruby® by Zhimin Zhan

The problem-solving guide to Selenium WebDriver with over 150 ready to run recipe
test scripts.

+ API Testing Recipes in Ruby* by Zhimin Zhan
The problem-solving guide to testing API such as SOAP and REST web services.

+ Learn Ruby Programming by Examples® by Zhimin Zhan and Courtney Zhan

Master Ruby programming to empower you to write test scripts.

'https://leanpub.com/practical-continuous-testing
*https://leanpub.com/practical-desktop-app- test-automation-with-appium
*https://leanpub.com/selenium-recipes-in-ruby

“https://leanpub.com/api- testing- recipes-in-ruby
*https://leanpub.com/learn-ruby-programming-by-examples-en

http://leanpub.com/practical-web-test-automation
https://leanpub.com/practical-continuous-testing
https://leanpub.com/practical-desktop-app-test-automation-with-appium
https://leanpub.com/selenium-recipes-in-ruby
https://leanpub.com/api-testing-recipes-in-ruby
https://leanpub.com/learn-ruby-programming-by-examples-en
https://leanpub.com/practical-continuous-testing
https://leanpub.com/practical-desktop-app-test-automation-with-appium
https://leanpub.com/selenium-recipes-in-ruby
https://leanpub.com/api-testing-recipes-in-ruby
https://leanpub.com/learn-ruby-programming-by-examples-en

Resources 79

Web Sites

+ Selenium Ruby API°
The API has searchable interface, The SearchContext and Element class are particularly
important:
- SearchContext’
- Element®
« Watir API’
+ Selenium Home™
« RSpec™
+ Cucumber®
+ My Blog on Medium™

With 200+ blog articles in Test Automation, Continuous Testing, Programming, ..., etc.
Many of these articles are featured in various software testing newsletters.

Tools

« TestWise IDE**

AgileWay’s next-generation functional testing IDE supports Selenium, Watir with
RSpec and Cucumber. TestWise Community Edition is free.
+ Apatana Studio”

Free Eclipse based Web development IDE, supporting Ruby and RSpec.
+ BuildWise'

AgileWay’s free and open-source continuous build server, purposely designed for
running automated UT tests with quick feedback.

®https://www.rubydoc.info/gems/selenium-webdriver/Selenium/WebDriver
"https://www.rubydoc.info/gems/selenium-webdriver/Selenium/WebDriver/SearchContext
®https://www.rubydoc.info/gems/selenium-webdriver/Selenium/WebDriver/Element
*https://www.rubydoc.info/gems/watir/

“https://www.selenium.dev

http://rspec.info

*http://cukes.info

https://zhiminzhan.medium.com/

"*https://agileway.com.au/testwise

*http://aptana.com

!“https://agileway.com.au/buildwise

https://www.rubydoc.info/gems/selenium-webdriver/Selenium/WebDriver
https://www.rubydoc.info/gems/selenium-webdriver/Selenium/WebDriver/SearchContext
https://www.rubydoc.info/gems/selenium-webdriver/Selenium/WebDriver/Element
https://www.rubydoc.info/gems/watir/
https://www.selenium.dev/
http://rspec.info/
http://cukes.info/
https://zhiminzhan.medium.com/
https://agileway.com.au/testwise
http://aptana.com/
https://agileway.com.au/buildwise
https://www.rubydoc.info/gems/selenium-webdriver/Selenium/WebDriver
https://www.rubydoc.info/gems/selenium-webdriver/Selenium/WebDriver/SearchContext
https://www.rubydoc.info/gems/selenium-webdriver/Selenium/WebDriver/Element
https://www.rubydoc.info/gems/watir/
https://www.selenium.dev/
http://rspec.info/
http://cukes.info/
https://zhiminzhan.medium.com/
https://agileway.com.au/testwise
http://aptana.com/
https://agileway.com.au/buildwise

References

[Crispin & Gregory 09] Lisa Crispin and Janet Gregory. 2009. Agile Testing. Addison-Wesley
Progressional.

[Shore & Warden 08] James Shore and Shane Warden. The Art of Agile Development. 2008.
O’Reilly Media Inc.

[Hunt & Thomas 00] Andrew Hunt and David Thomas. 2000. The Pragmatic Programmer:
From Journeyman to Master. Addison-Wesley Progressional.

[Fowler et al. 99] Martin Fowler, Kent Beck, John Brant, William Opdyke, Don Roberts.
“Refactoring: Improving the Design of Existing Code”, Addison-Wesley Progressional.

[Fowler 00] Martin Fowler, “Continuous Integration (original version)” (posted Sep 10, 2010)
http://martinfowler.com/articles/original ContinuousIntegration.html

[Crispin 07] Lisa Crispin, “To Track or Not to Track”.
http://lisacrispin.com/downloads/TrackOrNot.pdf

[Crispin 08] Lisa Crispin, “The Team’s Pulse: CI/Build Process” (posted on Aug 23, 2010)
http://lisacrispin.com/wordpress/2010/08/23/the-teams-pulse-cibuild-process/

[NEWS 11b] “Queensland Health payroll will cost up to $220 million to fix, acting director-
general admits”. Jul 14, 2011. http://www.couriermail.com.au/news/queensland/queensland-
health-payroll-will-cost-up-to-220-million-to-fix-acting-director-general-admits/story-e6freoof-
1226094095536

[NEWS 10a] “Pay system not properly tested: report”, Jun 29, 2010.
http://www.computerworld.com.au/article/351475/pay_system_properly_tested_report/#closeme

[Calzolari et al, 98] F. Calzolari, P. Tonella and G. Antoniol. 1998. “Dynamic Model for
Maintenance and Testing Effort”. Software Maintenance, 1998. Proceedings.

[Wells 09] Don Wells, “The Values of Extreme Programming”
http://www.extremeprogramming.org/values.html

[NEWS 11c] “What would Larry Page do? Leadership lessons from Google’s doyen”. April

18, 2011.
http://management.fortune.cnn.com/2011/04/18/what-would-larry-page-do-leadership-lessons-
from-google’s-doyen/

References 81

[Cockburn 04] Alistair Cockburn. 2004.
http://groups.yahoo.com/group/scrumdevelopment/message/2977?threaded=1&p=25

[Feathers 10] Michael Feathers. “Ul Test Automation Tools are Snake Oil”, Object Men-
tor Blog (posted on Jan 4 2010). http://blog.objectmentor.com/articles/2010/01/04/ui-test-
automation-tools-are-snake-oil

[IDT07] Bernie Gauf and Elfriede Dustin. 2007. “The Case for Automated Software Testing”.
http://journal.thedacs.com/issue/43/90

[AAFTT09] AAFTT Workshop 2009. http://cds43.wordpress.com/2009/10/06/aaftt-workshop-
2009-chicago/

[AAFTT07] Agile Alliance Functional Testing Tools Visioning Workshop. 2007.
http://www.infoq.com/news/2007/10/next-gen-functional-testing

[Myers, Glenford 04]. The Art of Software Testing. Wiley. ISBN 978-0471469124.
[FSF] The Free Software Definition, http://www.gnu.org/philosophy/free-sw.html

	Table of Contents
	Preface
	Who should read this book?
	How to read this book?
	What’s inside the book?
	Test scripts, Screencasts and other resources
	Send me feedback
	Acknowledgements

	What is Web Test Automation?
	Test automation benefits
	Reality check
	Reasons for test automation failures
	Successful web test automation
	Learning approach
	Next action

	First Automated Test
	Test Design
	Installing TestWise (about 2 minutes)
	Create Automated Test
	Selenium Syntax in minutes
	Create a test case
	Run the full test in a Chrome browser
	Running on macOS
	When a test failed…
	Wrap up

	How Automated Testing works
	Web test drivers
	Automated testing rhythm
	Test frameworks
	Run tests from the command line

	TestWise - Functional Testing IDE
	Philosophy of TestWise
	TestWise project structure
	Test execution
	Keyboard navigation
	Snippets
	Script library
	Test refactoring
	Wrap up

	Case Study
	Test site
	Preparation
	Create a test project
	Test Suite: Sign in
	Test Suite: Select Flights
	Enter passenger details
	Book confirmation after payment
	Run all tests
	Wrap up

	Maintainable Functional Test Design
	Record/Playback leads to unmaintainable test scripts
	Success criteria
	Maintainable automated test design
	Maintain with ease
	Case Study: refine test scripts
	Wrap Up

	Test Automation Characteristics
	Specific
	Clean
	Independent
	Frequent
	Focused
	Programmable
	Creative
	Sustainable
	Wrap up

	Functional Test Refactoring
	Code refactoring
	Functional test refactoring
	Tool support
	Case study
	Summary

	Review
	Syntax errors
	Set up source control
	GUI Object Map
	Custom libraries
	Debugging
	Cross-browser functional testing
	Data-Driven Test
	What is the best learning method?

	Collaboration
	Pre-requisite
	Scenario 1: ``It worked on my machine''
	Scenario 2: Synergy
	Scenario 3: Acceptance Test-Driven Development
	Wrap up

	Continuous Integration with Functional Tests
	Long feedback loop
	Continuous Integration
	Continuous Integration and Testing
	CI build steps
	Functional UI testing build step with Rake
	Set up a Continuous Testing server: BuildWise
	Create a Build Project
	Trigger test execution manually
	Feedback while test execution in progress
	Build finished
	Exercise: Set up CT for your own project
	Review

	Test Reporting
	Reporting automated test results
	Defect tracking
	Requirement traceability

	WebDriver Backed variants
	Watir
	RWebSpec
	Capybara
	Test design with Watir, RWebSpec and Capybara
	Review

	Cucumber
	Cucumber framework
	Comparison: RSpec and Cucumber
	RSpec and Cucumber co-exist

	Adopting Test Automation
	Seek executive sponsorship
	Choose test framework
	Select test tool
	Find a mentor
	Manage expectation
	Solo test automation
	Common mistakes
	Wrap up

	Appendix 1 Functional Test Refactoring Catalog
	Move Test Scripts
	Extract Function
	Extract to Page Class
	Introduce Page Object
	Rename

	Appendix 2 Case Study: Test Automation in ClinicWise project
	Build Stats
	Stage 1: Write automated tests on the first day
	Stage 2: Set up CI server within the first week
	Stage 3: Release to production early
	Stage 4: Release often (daily)
	Stage 5: Set up parallel test execution in CI
	Questions and Answers

	Resources
	Books
	Web Sites
	Tools

	References

