

[image: Microservices - A Practical Guide]

 Microservices - A Practical Guide

 Principles, Concepts, and Recipes

 Eberhard Wolff

 This book is for sale at http://leanpub.com/practical-microservices

 This version was published on 2021-04-21

 [image: publisher's logo]

 * * * * *

 This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing process. Lean Publishing is the act of publishing an in-progress ebook using lightweight tools and many iterations to get reader feedback, pivot until you have the right book and build traction once you do.

 * * * * *

© 2018 - 2021 Eberhard Wolff

 Table of Contents

 	
 Introduction to the Sample

 	
 0 Introduction

 	
 0.1 Structure of the Book

 	
 0.2 Target Group

 	
 0.3 Prior Knowledge

 	
 0.4 Quick Start

 	
 0.5 Acknowledgements

 	
 0.6 Website

 	
 Part I: Principles of Microservices

 	
 Part II: Technology Stacks

 	
 11 Recipe: Messaging and Kafka

 	
 11.1 Message-oriented Middleware (MOM)

 	
 11.2 The Architecture of Kafka

 	
 11.3 Events with Kafka

 	
 11.4 Example

 	
 11.5 Recipe Variations

 	
 11.6 Experiments

 	
 11.7 Conclusion

 	
 Part III: Operation

 	
 Table of Contents of the Complete Book

 Guide

 	
 Begin Reading

Introduction to the Sample

Thank you for your interest in the book “Microservices - A Practical
Guide” and for downloading this sample!

The sample contains the introduction to show
you the goal of the book and the approach the book takes.

The books is divided into three parts. The sample contains
the introductions to each part and the full table of content to provide
an overview of all the subjects that the book covers.

Chapter 11 is an example of a chapter of the
book. It covers Kafka and shows the approach the book takes
with regards to explaining the technologies.

The book is a translation from German.

You can find a list of the demos for the book at
http://ewolff.com/microservices-demos.html . The free
Microservices Recipes
eBook
also provides an overview of these demos.

0 Introduction

Microservices are one of the most important software architecture
trends. A number of detailed guides to microservices are already
currently available,
among them the microservices-book
written by the author of this volume. So why do we need still another
book on microservices?

It is one thing to define an architecture, quite another
to implement it. This book presents technologies for the
implementation of microservices and highlights the associated benefits
and disadvantages.

The focus rests specifically on technologies for entire microservices
systems. Each individual microservice can be implemented
using different technologies. Therefore, the technological decisions for frameworks
for individual microservices are not as important as the decisions at the
level of the overall system. For individual microservices, the decision
for a framework can be quite easily revised. However, technologies
chosen for the overall system are difficult to change.

This means, compared to the
microservices-book, this book talks
primarily about technologies. This does discuss architecture and
reasons for or against microservices, but only briefly.

Basic Principles

To become familiar with microservices, an introduction into
microservices-based architectures and their benefits, disadvantages,
and variations is essential. However, this book explains the basic
principles only to the extent required for
understanding the practical implementations.
A more complete discussion is part of the
microservices-book.

Concepts

Microservices require solutions for different challenges. Among those
are concepts for integration (frontend integration, synchronous and
asynchronous microservices) and for operation (monitoring, log
analysis, tracing). Microservices platforms such as PaaS or
Kubernetes represent exhaustive solutions for the operation of
microservices.

Recipes

The book uses recipes as a metaphor for the technologies, which can be
used to implement the different concepts. Each approach shares a
number of features with a recipe.

 	Each recipe is described in practical terms, including an
 exemplary technical implementation. The most important aspect of the
 examples is their simplicity. Each example can be easily followed,
 extended, and modified.

 	The book provides the reader with a plethora of recipes. The
 readers have to select a specific recipe from this collection for
 their projects, akin to a cook who has to select a recipe for her or
 his
 menu. The book shows different options. In practice, nearly every
 project has to be dealt with differently. The recipes build the basis
 for this.

 	
Variations exit for each recipe. After all, a recipe can be
cooked in many different ways. This is also true for the
technologies described in this book. Sometimes the variations are
very simple, so that they can be immediately implemented as
experiments in an executable example.

Each recipe includes an associated executable example based on a concrete
technology. The examples can be run individually; they are not based
on each other. This allows the readers to concentrate on the recipes
that are interesting and useful for them and to skip the examples
that are less relevant for their work.

In this manner, the book provides an easy access for obtaining an
overview of the relevant technologies, and thereby enables the
readers to select a suitable technology stack. Subsequently, the
readers can use the links supplied in the book to acquire in depth
knowledge about the relevant technologies.

Source Code

Sample code is provided for almost all the technologies presented
in this book. If the reader wants to really understand the
technologies, it makes sense to browse the code. It also makes sense
to look at the code to understand how the concepts are actually
implemented. The reader might even want to have the source right next
to the book to read both code and this book.

0.1 Structure of the Book

This book consists of three parts.

Part I — Architecture Basics

Part I introduces the basic principles of a microservices-based architecture.

 [image: Overview of Part I]
 Overview of Part I

 	
Chapter 1 defines the term microservice.

 	A microservices architecture has two levels: micro and
macro architecture. They represent global and local decisions as explained in
chapter 2.

 	Often, old systems are migrated into microservices, a topic
covered in chapter 3.

Part II — Technology Stacks

Technology stacks are the focus of part II.

 [image: Overview of Part II]
 Overview of Part II

 	
Docker serves as basis for many microservices architectures
(chapter 4). It facilitates the roll-out of
software and the operation of the services.

 	The technical micro architecture
(chapter 5) describes technologies
for implementing microservices.

 	
Chapter 6 explains Self-contained Systems (SCS) as
an especially useful approach for microservices. It focuses on
microservices that include a UI as well as logic.

 	One possibility for integration in particular for SCS is
 integrating at
 the web frontend (chapter 7). Frontend
 integration results in a loose coupling between the microservices and
 a high degree of flexibility.

 	The recipe for web frontend integration presented in
 chapter 8
 capitalizes on links and
 JavaScript for dynamic content loading. This approach is easy
 to implement and utilizes well-established web technologies.

 	On the server, integration can be achieved with ESI (Edge Side
 Includes) (chapter 9). ESI is implemented in web
 caches so that the system can attain high performance and
 reliability.

 	The concept of asynchronous communication is the focus of
 chapter 10. Asynchronous communication
 improves reliability and decouples the systems.

 	
Apache Kafka is an example for an asynchronous technology
(chapter 11) for sending messages. Kafka
can save messages permanently and thereby enables a different
approach to asynchronous processing.

 	An alternative for asynchronous communication is Atom
(chapter 12).
Atom uses a REST infrastructure and thus is very easy to implement
and operate.

 	
Chapter 13 illustrates how to implement
 synchronous microservices. Synchronous
 communication between microservices is often used in practice
 although this approach can pose challenges in regards to
 response times and reliability.

 	The Netflix Stack (chapter 14) offers Eureka
for service discovery, Ribbon for load balancing, Hystrix for
resilience, and Zuul for routing. The Netflix Stack is especially widely used
in the Java community.

 	
Consul (chapter 15) is an alternative option for
service discovery. Consul contains numerous features and can be
used with a broad spectrum of technologies.

 	
Chapter 16 explains the concept of
microservices platforms, which support operation and communication
of microservices.

 	The Kubernetes (chapter 17)
infrastructure can be used as a microservices
platform and is able to execute Docker containers, as well as having
solutions for service discovery and load balancing. The
microservice remains independent of this infrastructure.

 	
PaaS (Platform as a Service) is another infrastructure that can be
 used as a microservices platform
 (chapter 18). Cloud
 Foundry is used as an example. Cloud Foundry is very flexible and
 can be
 run in your own computing center as well as in the public cloud.

Part III — Operation

It is a huge challenge to ensure the operation of a plethora of
microservices. Part III discusses possible recipes
that address this challenge.

 [image: Overview of Part III]
 Overview of Part III

 	
Chapter 19 explains basic
principles of operation, and why it is so hard to operate microservices.

 	
Chapter 20 deals with monitoring and
introduces the tool Prometheus. Prometheus supports
multi-dimensional data structures and can analyze metrics even
of numerous microservice instances.

 	
Chapter 21 concentrates on the analysis of log
data. The Elastic Stack is presented as a concrete tool. This stack
is very
popular and represents a good basis for analyzing large amounts of log data.

 	
Tracing allows one to trace calls between microservices
 (chapter 22), often done with the help of
 Zipkin. Zipkin supports different platforms and represents a
 de facto standard for tracing.

 	
Service meshes add proxies to the network traffic between
microservices. This enables them to support monitoring, log
analysis, tracing and other features such as resilience or
security. Chapter 23 explains Istio as an
example of a service mesh.

Conclusion and Appendices

At the end of the book, chapter 24 offers an
outlook.

The appendices explain the software installation
(appendix A), how to use the build tool
Maven (appendix B), and also Docker and Docker Compose
(appendix C), which you can use to run the
environments for the examples.

0.2 Target Group

This book explains basic principles and technical aspects of
microservices. Thus, it is interesting for different audiences.

 	For developers, part II offers a guideline
for selecting a suitable technology stack. The example projects
serve as basis for learning the foundations of the technologies. The
microservices contained in the example projects are written in Java
using the Spring Framework. However, the technologies used in the
examples serve to integrate microservices. So additional
microservices can be written in different languages.
Part III completes the book by
including the topic of operation that becomes more and more important
for developers. Part I explains the basic
principles of architecture concepts.

 	For architects, part I contains fundamental
knowledge about microservices. Part II and
III present practical recipes and technologies
for implementing microservices architectures. With these topics, this
book goes much more into depth than other
books that just focus on architecture, but do not cover technologies.

 	For experts in DevOps and operations, the recipes in
part III represent a sound basis for a
technological evaluation of operational aspects such as log
analysis, monitoring, and tracing of
microservices. Part II introduces
technologies for deployment such as Docker, Kubernetes, or Cloud
Foundry that also solve some operational
challenges. Part I provides background about
the concepts behind the microservices architecture
approach.

 	
Managers are presented with an overview of the advantages and
specific challenges of the microservices architecture approach
in part I. If they are interested in
technical details, they will benefit from reading
part II and III .

0.3 Prior Knowledge

The book assumes the reader to have basic knowledge of software
architecture and software development. All practical examples are
documented in such a way that they can be executed with very little
prior knowledge. This book focuses on technologies that can be
employed for microservices using different programming
languages. However, the
examples are written in Java using the Spring Boot and Spring Cloud
frameworks so that changes to the code require knowledge of Java.

0.4 Quick Start

This book focuses first of all on introducing technologies. An example
system is presented for each
technology in each chapter. In addition, the
quick start allows the reader to
rapidly gain practical experience with the different technologies and
to understand how they work with the help of the examples.

 	First, the necessary software has to be installed on the computer.
 The installation is described in appendix A.

 	
Maven handles the build of the examples.
Appendix B explains how to use Maven.

 	All the examples use Docker and Docker Compose.
 Appendix C describes the most
 important commands for Docker and Docker Compose.

For the Maven-based build and also for Docker and Docker Compose, the
chapters contain basic instructions and advice on troubleshooting.

The examples are explained in the following sections:

 	Concept
 	Recipe
 	Section

 	Frontend Integration
 	Links and Client-side Integration
 	8.2

 	Frontend Integration
 	Edge Side Includes (ESI)
 	9.2

 	Asynchronous Microservices
 	Kafka
 	11.4

 	Asynchronous Microservices
 	REST and Atom
 	12.2

 	Synchronous Microservices
 	Netflix Stack
 	14.1

 	Synchronous Microservices
 	Consul and Apache httpd
 	15.1

 	Microservices Platform
 	Kubernetes
 	17.3

 	Microservices Platform
 	Cloud Foundry
 	18.3

 	Operation
 	Monitoring with Prometheus
 	20.4

 	Operation
 	Log Analysis with Elastic Stack
 	21.3

 	Operation
 	Tracing with Zipkin
 	22.2

 	Operation
 	Service Mesh with Istio
 	23.2

All projects are available on GitHub. The projects always contain
a HOW-TO-RUN.md file showing step-by-step instructions on how
the demos can be installed and started.

The examples are independent of each other, so you can start
with any one of them.

0.5 Acknowledgements

I would like to thank everybody who discussed microservices with me,
who asked me about them, or worked with me. Unfortunately, these are
far too numerous to name them all individually. The exchange of ideas is
enormously helpful and also fun!

Many of the ideas and also their implementation would not have been
possible without my colleagues at INNOQ. I would especially like to
thank
Alexander Heusingfeld,
Christian Stettler,
Christine Koppelt,
Daniel Westheide,
Gerald Preissler,
Hanna Prinz,
Jörg Müller,
Lucas Dohmen,
Marc Giersch,
Michael Simons,
Michael Vitz,
Philipp Neugebauer,
Simon Kölsch,
Sophie Kuna,
Stefan Lauer,
and
Tammo van Lessen.

Also Merten Driemeyer
and
Olcay Tümce provided important feedback.

Finally, I would like to thank my friends and family, whom I often
neglected while writing this book – especially my wife. She also did
the translation into English.

Of course, my thanks go also to the people who developed the
technologies which I introduce in this book and thereby created the
foundation for microservices.

I also would like to thank the developers of the tools of
https://www.softcover.io/ and Leanpub.

Last but not least, I would like to thank my publisher dpunkt.verlag
and René Schönfeldt,
who professionally supported me during the creation of the German
version of this book.

0.6 Website

You can find the website accompanying this book at
http://practical-microservices.com/. It contains links to the examples
and also errata.

Part I: Principles of Microservices

The first part of this book introduces the fundamental ideas underlying microservice-based architectures.

Microservices

Chapter 1 explains the basics about microservices. What are microservices? What benefits and disadvantages do microservices architectures have?

Micro and Macro Architecture

Microservices offer a lot of freedom. Still, some decisions have to be
made that affect all microservices of a system. Chapter
2 introduces the concept of micro and macro
architecture. Micro architecture comprises all decisions that can be
made individually for each microservice. Macro architecture, on the
other hand, comprises the decisions that concern all microservices. In
addition to the components of micro and macro architecture, this book
also explains who designs macro architecture.

Migration

Most microservice projects serve to migrate an existing system into a
microservices architecture. Therefore, chapter 3
presents possible objectives for a migration and introduces
different strategies for migrations.

Part II: Technology Stacks

The second part of this book deals with recipes for technologies that can be used to implement microservices.

Docker

First, chapter 4 provides an introduction
to Docker. Docker offers a good foundation for the implementation of
microservices and is the basis for the examples in this book. Reading
this chapter is therefore critical for understanding the examples in
the later chapters.

Technical Micro Architecture

Chapter 2 introduced the concepts of micro and
macro architecture. Micro architecture comprises the decisions that
can be made differently for each microservice. Macro architecture
represents
the decisions that have to be uniform for all microservices.
Chapter 5 discusses technical
possibilities for the implementation of the micro architecture
of a microservice.

Self-contained Systems

Chapter 6 describes Self-contained Systems. They
are a collection of best practices for microservices architectures with
a focus on independence and web applications. In addition to benefits
and disadvantages, this chapter discusses possible variations of this
idea.

SCS always include a web UI and rely on frontend
integration. Therefore, discussing this approach right
before frontend integration is explained in more detail makes sense to
motivate
this approach for integration.

Frontend Integration

One possibility for the integration of microservices is frontend
integration, which chapter 7 explains. A
concrete technical implementation with links and client-side
integration with JavaScript is shown in
chapter 8.
Chapter 9 describes Edge Side Includes (ESI) that
provide UI integration on the server.

Asynchronous Microservices

Chapter 10 presents asynchronous
microservices. Chapter 11
introduces Apache Kafka as an example of a middleware that can be
used to implement asynchronous microservices. Atom, the topic of
chapter 12, is a data format that can be useful for
asynchronous communication via REST.

Synchronous Microservices

Chapter 13 explains synchronous
microservices. The Netflix stack
discussed in chapter 14 is a way to implement
synchronous microservices. The stack includes solutions for load
balancing, service discovery, and
resilience. Chapter 15 shows Consul as an
alternative for service discovery and introduces Apache httpd for
load balancing.

Microservices Platforms

Chapter 16 discusses microservice platforms,
which provide support for synchronous communication
and also a runtime environment for deployment and operation.
Chapter 17 demonstrates how synchronous
microservices can be implemented with Kubernetes. Kubernetes serves
as a runtime environment for Docker containers and has, among others,
features for load balancing and service discovery.

Chapter 18 describes PaaS (Platform as a Service).
A PaaS makes it possible to leave the operation and deployment of the
microservices to the infrastructure for the most part. Cloud Foundry
is discussed as an example for a PaaS.

11 Recipe: Messaging and Kafka

This chapter shows the integration of microservices using a
message-oriented middleware (MOM). A MOM sends messages and ensures
that they reach the recipient. MOMs are asynchronous. This means that
they do not implement request/reply as is done with synchronous
communication protocols, but only send messages.

MOMs have
different characteristics such as high reliability, low latency, or
high throughput. MOMs also have a long history; they form the basis of
numerous business-critical systems.

This chapter covers the following points:

 	First, it gives an overview of the various MOMs and their differences.
 This allows readers to form an opinion on which MOM is most suitable for supporting their application.

 	The introduction into Kafka shows why Kafka is especially well suited for a
microservices system and how event sourcing (see
section 10.2) can be implemented with
Kafka.

 	Finally, the example in this chapter illustrates at the code level how an
event sourcing system with Kafka can be built in practice.

11.1 Message-oriented Middleware (MOM)

Microservices are decoupled by a MOM. A microservice sends a message
to or receives it from the MOM. This means that sender and recipient
do not know each other, but only the communication channel. Service
discovery is therefore not necessary. Sender and recipient find each
other via the topic or queue through which they exchange messages.
Load balancing is also easy. If several recipients have registered for
the same communication channel, a message can be processed by one of the
recipients and the load can be distributed, thereby eliminating need
for a
specific infrastructure for load balancing.

However, a MOM is a complex software that handles all communication.
Therefore, the MOM must be highly available and has to offer a high
throughput. MOMs are generally very mature products, but ensuring
adequate performance under all conditions requires a lot of
know-how, for example, concerning the configuration.

Variants of MOMs

In the area of MOMs, the following products are popular:

 	
JMS
(Java Messaging Service) is a standardized API for the programming
language Java and part of the Java EE standard. Well known
implementations are Apache ActiveMQ
or IBM MQ, which
was previously known as IBM MQSeries. However, many more
JMS
products
are available.
JMS implementations might also provide APIs for other programming
languages than Java. Those would not be covered by the JMS
specification as it is specific for Java.
Java application servers that support the entire
Java EE profile – not just the web profile – have to contain a JMS
implementation, so that JMS is often anyway available.

 	
AMQP (Advanced Message Queuing Protocol)
 does not standardize an API, but a network protocol at the level of
TCP/IP. This allows for a simpler exchange of the implementation.
RabbitMQ,
Apache ActiveMQ, and
Apache Qpid are the best known implementations of the
 AMQP standard. There are also a lot more
implementations.

In addition, there is ZeroMQ,
which does not comply with any of the standards.
ZeroMQ is a library i.e. there is no need to install a message broker
to use it.
And
MQTT is a
messaging protocol that plays a prominent role for the Internet of
Things (IoT).

All of these MOM technologies can be used to build a microservices
system. If a certain technology is already in use and
thus knowledge about its use it readily available, a decision for an already
known technology can make a lot of sense. It takes a lot of effort to
run a microservices system. The use of a well-known technology reduces
risk and effort. The requirements for
availability and scalability of MOMs are high. A well-known MOM can
help to meet these requirements in a simple way.

11.2 The Architecture of Kafka

In the area of microservices, Kafka is an
interesting option. In addition to typical features such as high
throughput and low latency, Kafka can compensate for the failure of
individual servers via replication and can scale with a larger number
of servers.

Kafka Stores the Message History

Above all, Kafka is able to store an extensive message history.
Usually, MOMs aim only to deliver messages to recipients. The
MOM then deletes the message because it has left the MOM’s area of
responsibility. This saves resources. However, it also means that
approaches such as event sourcing (see
section 10.2) are possible only if every
microservice stores the event history itself. Kafka, on the other
hand, can save records permanently. Kafka can also handle large amounts
of data and can be distributed across multiple servers.

Kafka also has stream-processing capabilities. For this, applications
receive the data records from Kafka, transform them, and send them back
to Kafka.

Kafka: Licence and Committers

Kafka is licensed under Apache 2.0. This license grants users
extensive freedom. The project is run by the Apache Software
Foundation, which manages several open source projects. Many
committers work for the company Confluent, which also offers
commercial support, a Kafka Enterprise solution, and a solution in the
cloud.

APIs

Kafka offers a separate API for each of the three different tasks of a
MOM:

 	The producer API serves to send data.

 	The consumer API to receive data.

 	Finally, the streams API to transform the data.

Kafka is written in Java. The APIs can be used with a language-neutral
protocol.
Clients
for many programming languages are available.

Records

Kafka organizes data in records.
This is what other MOMs call “messages”.
Records contain the transported data
as a value. Kafka treats the value as a black box and does not
interpret the data. In addition, records have a key and
a timestamp.

A record could contain information about a new order or an update to
an order. The key can
then be composed of the identity of the record and information about
whether the record is an update or a new order – for example “update42” or
“neworder42.”

Topics

A topic is a set of records. Consumers send records to a topic and
consumers receive them from a topic. Topics have names.

If microservices in an e-commerce
system are interested in new orders or want to inform other
microservices about new orders, they could use a topic called
“order.” New customers
would be another topic; that topic could be called “customer.”

Partitions

Topics are divided into partitions. Partitions allow strong
guarantees concerning the order of records, but also parallel
processing.

When a producer creates a new
record, it is appended to a partition.
Therefore, each record is stored in only one single partition.
Records are usually assigned to partitions by calculating the hash of
the key of the record.
However, a producer can also implement its own algorithm to assign
records to a partition.

For each partition, the order of the records is preserved. That means
the order in
which the records are written to the partition is also the order in
which consumers read the records. There is no guarantee of order
across partitions. Therefore, partitions are also a concept for
parallel processing: Reading in a partition is linear. A consumer has
to process each record in order. Across
partitions, processing can be parallel.

More partitions have
different effects.
They allow more parallelism, but at a cost of higher overhead and
resource consumption.
So it makes sense to have a considerable number of partitions, but not
too many. Hundreds of partitions is typical.

Basically, a partition is just a file to which records are appended.
Appending data is one of the most efficient operations
on a mass storage device. Moreover, such operations are very reliable
and easy to implement.
This makes the implementation of Kafka not too complex.

To continue the example with the “order” topic: There might be a record
with the key “neworder42” that contains an event about the order 42
that was just created and “updated42” which contains an update to the
order 42. With the default key algorithm, the keys would be
hashed. The two records might therefore end up in different partitions
and no order might be preserved. This is not ideal because the two
events obviously need to be processed in the correct order. It makes
no sense to process “updated42” before “neworder42.” However, it is
perfectly fine to process “updated42” and “updated21” because the
orders probably do not depend on each other. So the producer would
need to implement an algorithm that sends the records with the keys
“updated42” and “neworder42” to the same partition.

Commit

For each consumer, Kafka stores
the offset for each partition. This offset indicates which record in
the partition the consumer read and processed last. It helps Kafka to
ensure that each record is eventually handled.

When consumers have processed a record, they commit a new offset. In
this way, Kafka knows at all times which records have been processed
by which consumer and which records still have to be processed. Of
course, the consumers can commit records before they are actually
processed. As a result, records never getting processed is a
possibility.

The commit is on an offset – for example, “all records up to record 10 in this
partition have been processed.”
So a consumer can commit a batch of records, which results in better
performance because fewer commits are required. But then duplicates
can occur. This happens when the consumer fails after processing a
part of a batch but has not yet committed the batch. At restart, the
application would read the complete batch again, because Kafka
restarts at the last committed record and thus at the beginning of the
batch.

Kafka also supports
exactly once semantics
– that is, a guaranteed one-time delivery.

Polling

The consumers poll the data. In other words, the consumers fetch new
data and
process it. With the push model, on the other hand, the producer would
send the data to the consumer.
Polling doesn’t seem to be very elegant. However, in absence of a push,
the consumers are protected from too
much load when a large number of records are being sent and
have to be processed. Consumers can decide for themselves when they
process the records. Libraries like Spring Kafka for Java, which is
used in the
example, poll new records in the background. The developer
implement methods to handle new records. Spring Kafka then calls
them
The polling is hidden from the developer.

Records, Topics, Partitions, and Commits

 [image: Fig. 11-1: Partitions and Topics in Kafka]
 Fig. 11-1: Partitions and Topics in Kafka

Figure 11-1 shows an example. The
topic is divided into three partitions, each containing three records.
In the lower part of the figure are the newer records.
The producer creates new records at the bottom. The consumer has not yet
committed the latest record for the first partition, but has for all other
partitions.

Replication

Partitions store the data. Because data in one partition is independent from
data in the other partitions, partitions can be distributed over
servers. Each server
then processes some partitions. This allows load balancing. To handle
a larger load, new servers just need to be added and some partitions
must be moved to the new server.

The
partitions can also be replicated, so that the data is stored on several
servers. This way Kafka can be made fail-safe. If one server crashes
or loses its data, other replicas still exist.

The number “N” of replicas can be configured. When writing, you can
determine how many in-sync replicas must commit changes. With N=3
replicas and two in-sync replicas, the cluster remains available even if
one of the three replicas fails. Even if one server fails,
new records can still be written
to two replicas. If a replica fails, no data is lost because every
write operation must have been successful on at least two replicas.
Even if a replica is lost, the data must still be stored on at least
one additional replica. Kafka thus supports some fine tuning
regarding the CAP theorem (see
section 10.2) by changing the number of
replicas and in-sync replicas.

Leader and Follower

The replication is implemented in such a way that one leader writes
and the remaining replicas write as followers. The producer writes
directly to the leader. Several write operations can be combined in a
batch. On the one hand, it then takes longer before a batch is complete
and for the changes to be actually saved. On the other hand, throughput
increases because it is more efficient to store multiple records at
once.
The overhead of coordinating the writes just happens once for the full
batch and not for each record.

Retry Sending

If the transfer to the consumer was not successful, the producer can
use the API
to specify that the transfer is attempted again. The default setting
is that sending a record is not repeated. This can cause records to be
lost. If the transfer is configured to occur more than once, the
record may already have been successfully transferred despite the
error. In this case, there would be a duplicate, which the consumer
would have to be able to deal with. One possibility is to develop the
consumer in such a way that it offers idempotent processing. This
means that the consumer is in the same state, no matter how often the
consumer processes a record (see
section 10.3). For example, if
a duplicate is received, the consumer can determine that it has already
modified the record accordingly and ignore it.

Consumer Groups

An event like “neworder42” should probably be processed only once by
one instance of the invoicing microservice. Therefore, just one instance of a
microservice should receive it. That ensures that only one invoice
is written for this order. However, another instance of a microservice
might work on “neworder21” in parallel.

Consumers are organized in consumer groups. Each partition sends
records to exactly
one consumer in the consumer group. One consumer can be responsible
for several partitions.

 [image: Fig. 11-2: Consumer Groups and Partitions]
 Fig. 11-2: Consumer Groups and Partitions

Thus, a consumer receives the messages of one or multiple partitions.
Figure 11-2 shows an
example. Consumer 1 receives the messages of partitions 1 and 2.
Consumer 2 receives the messages of partition 3.

So the invoicing microservice instances could be organized in a
consumer group, ensuring that only one instance of
the invoicing microservice processes each record.

When a consumer receives a message from a partition, it will also
later receive
all messages from the same partition. The order of messages per
partition is also preserved. This means that records in different
partitions can be handled in
parallel, and at the same time the sequence of records in a single
partition is
guaranteed.
Therefore, the instance of the invoicing microservice that receives
“neworder42” would later on also receive “updated42” if those records
are sent to the same partition. So the instance would be responsible
for all events about the order 42.

Of course, this applies only if the mapping of consumers
to partitions remains stable. For example, if new consumers are added
to the consumer group for scaling, the mapping can change.
The new consumer would need to handle at least one partition. That
partition was previously handled by a different consumer.

The maximum number of consumers in a consumer group is equal to the
number of partitions, because each consumer must be responsible for at
least one partition. Ideally, there are more partitions than consumers
to be able to add more consumers when scaling.

Consumers are always members of a consumer group. Therefore, they
receive only records sent to their partitions.
If each consumer is to receive all records from all partitions, then
there must be a separate consumer group for each consumer with only
one member.

Persistence

Kafka is a mixture of a messaging system and data storage solution.
The records in the partitions can be read by consumers and written by
producers. The default retention for records is seven days, but it can
be changed.
The records can also be saved permanently. The consumers merely store
their offset.

A new consumer can therefore process all records that have ever been
written by a producer in order to update its own state.

If a consumer is much too slow to handle all records in a timely
manner, Kafka stores them for quite a long time, thereby allowing the
consumer to
process the records later to keep up.

Log Compaction

However, this means that Kafka has to store more and more data over
time. Some records, however, eventually become irrelevant. If a
customer has moved several times, you may only want to keep the last
information about the last move as a record in Kafka. Log compaction
is used for this purpose.
All records with the same key are removed, except for the last one.
Therefore, the choice of the key is very important and must be
considered from a domain logic point of view in order to have all the
relevant records still available after log compaction.

So a log compaction for the order topic would remove all events with
the key “updated42” but the very last one. As a result, only the very
last
update to the order remains available in Kafka.

11.3 Events with Kafka

Systems which communicate via Kafka can quite easily exchange events
(see also section 10.2).

 	Records can be saved permanently, and so a consumer can read out the
history and rebuild its state. The consumer does not have to store the
data locally, but can rely on Kafka. However, this means that all
relevant information must be stored in the record.
Section 10.2 discussed the benefits and
disadvantages of this approach.

 	If an event becomes irrelevant due to a new event, the data can be
deleted by Kafka’s log compaction.

 	Via consumer groups, Kafka can ensure that a single consumer handles each record. This simplifies matters, for example, when an
invoice is to be written. In this case, only one consumer should write
an invoice. It would be an error if several consumers were to create several
invoices at the same time.

Sending Events

The producer can send the events at different times. The simplest
option is to send the event after the actual action has taken place.
So the producer first processes an order before informing the other
microservices about the order with an event. In this
case, though, the producer could possibly change the data in the
database and not
send the event because, for example, it fails prior to sending the
event.

However, the producer can also send the events before the data is
actually changed. So when a new order arrives, the producer sends the
event before modifying the data in the local database. This doesn’t make
much sense, because events are actually information about an event that
has already happened. Finally, an error may occur during the action.
If this happens, the event has already been sent, although the action never took
place.

Sending events before the actual action also has the
disadvantage that the actual action is delayed. First an event is
sent, which takes some time, and only after the event has been sent can
the action be performed. So the action is delayed by the time it
takes to send the event.
This can lead to a
performance problem.

It is also possible to collect the events in a local database and to send
them in a batch. In this case, writing the changed data and generating
the data for the event in the database can take place in one
transaction. The transaction can ensure that either the data is
changed and an event is created in the database, or neither takes
place. This solution also achieves higher throughput because batches
can be used in Kafka to send several events in the database table at
once. However, the latency is higher: A change can be found in
Kafka only after the next batch has been written.

11.4 Example

The example in this section is based on the example for events from
section 10.2 (see
figure 11-3). The
microservice microservice-kafka-order is responsible for creating
the order. It sends the orders to a Kafka topic. Therefore
microservice-kafka-order is the producer.

Two microservices
read the orders. The microservice microservice-kafka-invoicing
issues an invoice for an order, and the
microservice microservice-kafka-shipping delivers the ordered goods.
The two microservices are organized in two consumer groups. So each
record is just consumed and processed by one instance of the microservice
microservice-kafka-invoicing and one instance of
microservice-kafka-shipping.

Data Model for the Communication

 [image: Fig. 11-3: Example for Kafka]
 Fig. 11-3: Example for Kafka

The two microservices microservice-kafka-invoicing
and microservice-kafka-shipping require different information. The
invoicing microservice requires the billing address and information
about the prices of the ordered goods. The shipping microservice needs
the delivery address, but does not require prices.

Both microservices read the necessary information from the same Kafka
topic and records. The only difference is what data they read from
the records. Technically, this is easily done because the data about
the orders is delivered as JSON. Thus, the two microservices can just
ignore unneeded fields.

Domain-Driven Design and Strategic Design

In the demo, the communication and conversion of the data are
deliberately kept simple. They implement the DDD pattern published
language. There is a standardized data format from which all systems
read the necessary data. With a large number of communication
partners, the data model can also become confusingly large.

In such a case customer/supplier could be used. The teams
responsible for shipping and invoicing dictate to the order team
what data an order must contain to allow shipping and
invoicing. The order team then provides the necessary data. The
interfaces can even be separated. This seems to be a step backwards.
After all, published language offers a common data structure that
all microservices can use. In reality, however, it is a mixture
of the two data sets that is needed by shipping and invoicing
on the one hand, and order on the other. Separating this one model
into two models for the communication between invoicing
and order or delivery and order makes it obvious which
data is
relevant for which microservice, and makes it easier to assess the
impact of changes. The two data models can be further developed
independently of each other. This serves the goal of microservices to
make software easier to modify and to limit the effects of a change.

The patterns customer/supplier and published language originate
from the strategic design part of the domain-driven design (DDD) (see
section 2.1).
Section 10.2 also discusses what data
should be contained in an event.

Implementation of the Communication

Technically, communication is implemented as follows. The Java
class Order from the project microservice-kafka-order is
serialized in JSON. The classes Invoice from the
project microservice-kafka-invoicing and Shipping from the
project microservice-kafka-shipping get their data from this
JSON. They ignore fields unrequired in the systems. The
only exceptions are the orderLines from Order, which
in shipping are called shippingLines and in Invoice are
called invoiceLine. For the conversion, there is a setOrderLine()
method in the two classes to deserialize the data from JSON.

Data Model for the Database

 [image: Fig. 11-4: Data Model in the System microservice-kafka-order]
 Fig. 11-4: Data Model in the System microservice-kafka-order

The database of the order microservice (see
figure 11-4) contains a table for the orders
(Ordertable) and the individual items in the orders (OrderLine).
Goods (Item) and customers (Customer) also have their own tables.

 [image: Fig. 11-5: Data Model in the System microservice-kafka-order]
 Fig. 11-5: Data Model in the System microservice-kafka-order

In the microservice microservice-kafka-invoice, the tables for
customers and items are missing. The customer data is stored only as
part of invoice, and the item data as part of invoiceLine (see
figure 11-5). The
data in the tables are copies of the customers’ and items’ data at
the time when the order was transferred to the system. This means that
if a customer changes his or her data or a product changes its price,
this does not affect the previous invoices. That is correct from a
domain logic perspective. After all, a price change should not affect
invoices that have already been written. Otherwise, getting the
correct price and customer information at the time of the invoice
can be implemented only with a complete history of the
data, which is quite complex. With the model used here, it is also
very easy to transfer discounts or special offers to the invoice. It
is necessary to send a different price for a product.

For the same reason, the microservice microservice kafka-shipping
has only the database tables Shipping and ShippingLine. Data for
customers
and items is copied to these tables so that the data is stored there
as it was when the delivery was triggered.

This example illustrates how bounded context simplifies the domain
models.

Inconsistencies

The example also shows another effect: The information in the system
can be inconsistent. Orders without invoices or orders without
deliveries can occur, but such conditions are not permanent. At some
point the Kafka topic will be read out with the new orders, and the
new orders will then generate an invoice and a delivery.

Technical Structure

 [image: Fig. 11-6: Overview of the Kafka System]
 Fig. 11-6: Overview of the Kafka System

Figure 11-6 shows how the example is
structured technically.

 	The Apache httpd distributes incoming HTTP requests.
Thus, there can be multiple instances of each microservice. This is
useful for showing the distribution of records to multiple consumers.
In addition, only the Apache httpd server is accessible from the
outside. The other microservices can be contacted only from inside the
Docker network.

 	
Zookeeper serves to coordinate the Kafka instances and stores,
among others, information about the distribution of topics and
partitions. The example uses the image at
https://hub.docker.com/r/wurstmeister/zookeeper/.

 	The Kafka instance ensures the communication between the
microservices. The order microservice sends the orders to the
shipping and invoicing microservices.
The example uses the Kafka image at
https://hub.docker.com/r/wurstmeister/kafka/.

 	Finally, the order, shipping, and invoicing microservices use the same
Postgres database. Within the database instance, each microservice
has its own separate database schema. Thus, the microservices are
completely independent in regards to their database schemas. At the
same time, one database instance can be enough to run all the
microservices. The alternative would be to give each microservice its
own database instance. However, this would increase the number of
Docker containers and would make the demo more
complex. Section 0.4
describes what software has to be installed to start the example.

The example can be found at
https://github.com/ewolff/microservice-kafka. To start the example,
you have to first download the code with git clone
https://github.com/ewolff/microservice-kafka.git. Afterwards, the
command ./mvnw clean package (macOS, Linux) or mvnw.cmd clean
package (Windows) has to be executed in the directory
microservice-kafka to compile the code.
See appendix B for more details on Maven and how to
troubleshoot the build.
Then docker-compose build
has to be executed
in the directory docker to generate the Docker images and
docker-compose up -d for starting the environment.
See appendix C for more details on Docker,
Docker Compose and how to troubleshoot them.
The Apache httpd
load balancer is available at port 8080. If Docker runs locally, it
can be found at http://localhost:8080/. From there, you can use
the order microservice to create an order. The
microservices shipping and invoicing should display the order data
after some time.

At https://github.com/ewolff/microservice-kafka/blob/master/HOW-TO-RUN.md
extensive documentation can be found that explains installation and
instructions for starting the example step by step.

Key for the Records

Kafka transfers the data in records. Each record contains an order.
The key of the record is the order ID with the extension created –
for example,
1created. Just the order ID would not be enough. In case of
a log compaction all records with an identical key are deleted except for
the last record. There can be different records for one order. One
record can be result from the generation of a new order, and other
records might be results of the different updates. Thus, the key
should contain more than the order ID to keep all records belonging to
an order during log compaction. When the key just corresponds to the
order ID, only the last record would be left after a log compaction.

However, this approach has the disadvantage that records belonging to
one order can end up in different partitions and with different
consumers because they have different keys. This means that, for
example, records for the same order can be processed in parallel, which
can cause errors.

Implementing a Custom Partitioner

To solve this problem, a function has to be implemented which
assigns all records for one order to one partition. A partition is
processed by a single consumer, and the sequence of the messages
within a partition is guaranteed. Thus, it is ensured that all
messages
located in the same partition
for one order are processed by the same consumer in the correct
sequence.

Such a function is called a
partitioner. Therefore,
it is possible to write custom code for the distribution of records
onto the partitions. This allows a producer to write all records which
belong
together from a domain perspective into the same partition and to have
them processed by the same consumer although they have different keys.

Sending All Information about the Order in the Record

A possible alternative would be, after all, to use only the order ID
as key. To avoid the problem with log compaction, it is possible to
send the complete state of the order along with each record so that a
consumer can reconstruct its state from the data in Kafka, although
only the last record for an order remains after log compaction.
However, this requires a data model that contains all the data all
consumers need. It can take quite some effort to design such a data
model, besides being complicated and difficult to maintain. It
also contradicts the bounded context pattern somewhat, even though it
can be considered a published language.

Technical Parameters of the Partitions and Topics

The topic order contains the order records. Docker Compose
configures the Kafka Docker container based on the environment
variable KAFKA_CREATE_TOPICS in the file docker-compose.yml in
such a way as to create the topic order.

The topic order is divided in five partitions. A greater number of
partitions allows for more concurrency. In the example scenario, it is
not important to have a high degree of concurrency. More partitions
require more file handles on the server and more memory on the client.
When a Kafka node fails, it might be necessary to choose a new leader
for each partition. This also takes longer when more
partitions exist. This argues rather for a lower number of partitions as
used in the example in order to save resources. The number of
partitions in a topic can still be changed after creating a topic.
However, in that case, the mapping of records to partitions will
change. This can cause problems because then the assignment of records
to consumers is not unambiguous anymore. Therefore, the number of
partitions should be chosen sufficiently high from the start.

No Replication in the Example

For a production environment, a replication across multiple servers is
necessary to compensate for the failure of individual servers. For a demo,
the level of complexity required for this is not needed, so that only
one Kafka node is running.

Producers

The order microservice has to send the information about the order
to the other microservices. To do so, the microservice uses the
KafkaTemplate. This class from the Spring Kafka framework
encapsulates the producer API and facilitates the sending of records.
Only the method send() has to be called. This is shown in the code
piece from the class OrderService in the listing.

public Order order(Order order) {
 if (order.getNumberOfLines() == 0) {
 throw new IllegalArgumentException("No order lines!");
 }
 order.setUpdated(new Date());
 Order result = orderRepository.save(order);
 fireOrderCreatedEvent(order);
 return result;
}

private void fireOrderCreatedEvent(Order order) {
 kafkaTemplate.send("order", order.getId() + "created", order);
}

Behind the scenes, Spring Kafka converts the Java objects to JSON data
with the help of the Jackson library. Additional configurations such
as, for example, the configuration of the JSON serialization can be
found in the file
 application.properties in the Java project. In docker-compose.yml,
environment variables for Docker Compose are defined, which are
evaluated by Spring Kafka. These are first of all the Kafka host and
the port. Thus, with a change to docker-compose.yml, the
configuration of the Docker container with the Kafka server can be
changed and the producers can be adapted in such a way that they use
the new Kafka host.

Consumers

The consumers are also configured in docker-compose.yml and with the
application.properties in the Java project. Spring Boot and Spring
Kafka automatically build an infrastructure with multiple threads that
read and process records. In the code, only a method is
annotated with @KafkaListener(topics = "order") in
the class OrderKafkaListener.

@KafkaListener(topics = "order")
public void order(Invoice invoice, Acknowledgment acknowledgment) {
 log.info("Received invoice " + invoice.getId());
 invoiceService.generateInvoice(invoice);
 acknowledgment.acknowledge();
}

One parameter of the method is a Java object that contains the data
from the JSON in the Kafka record. During deserialization the data
conversion takes place. Invoicing and shipping read only the data
they need; the remaining information is ignored. Of course, in a real
system, it is also possible to implement more complex logic than just
filtering the relevant fields.

The other parameter of the method is of the type Acknowledgement.
This allows the consumer to commit the record. When an error occurs,
the code can
prevent the acknowledgement. In this case, the record would be
processed again.

The data processing in the Kafka example is idempotent. When a record
is supposed to be processed, first the database is queried for
data stemming from a previous processing of the same record. If the
microservice finds such data,
the record is obviously a duplicate and is not processed a second
time.

Consumer Groups

The setting spring.kafka.consumer.group-id in the file
application.properties in the projects
microservice-kafka-invoicing and microservice-kafka-shipping
defines the consumer group to which the microservices belong. All
instances of shipping or invoicing each form a consumer group.
Exactly one instance of the shipping or invoicing microservice
therefore receives a
record. This ensures that an order is not processed in parallel by
multiple instances.

Using docker-compose up --scale shipping=2, more instances of the
shipping microservice can be started. If you look at the log output of
an instance with docker logs -f mskafka_shipping_1, you will see
which partitions are assigned to this instance and that the assignment
changes when additional instances are started. Similarly, you can see
which instance processes a record when a new order is generated.

It is also possible to have a look at the content of the topic. To do
so, you have first to start a shell on the Kafka container with
docker exec -it mskafka_kafka_1 /bin/sh. The command
kafka-console-consumer.sh --bootstrap-server kafka:9092 --topic
order --from-beginning shows the complete content of the topic. Because
all the microservices belong to a consumer group and commit the
processed records, they receive only the new records. However, a new
consumer group would indeed process all records again.

Tests with Embedded Kafka

In a JUnit test, an embedded Kafka server can be used to analyze the
functionality of the microservices. In this case, a Kafka server runs
in the same Java Virtual Machine (JVM) as the test. Thus, it is not
necessary to build up an infrastructure for the test, and consequently
there is no need to tear down the infrastructure again after the test.

This requires two things essentially:

 	An embedded Kafka server has to be started. With a class rule, JUnit can be triggered to start a Kafka server
prior to the tests and to shut it down again after the tests.
Therefore, a variable with @ClassRule must be added to the code.

@ClassRule
public static KafkaEmbedded embeddedKafka =
 new KafkaEmbedded(1, true, "order");

 	The
Spring Boot configuration must be adapted in such a manner that Spring
Boot uses the Kafka server. This code is found in a method
annotated with @BeforeClass, so that it executes before the tests.

@BeforeClass
public static void setUpBeforeClass() {
 System.setProperty("spring.kafka.bootstrap-servers",
 embeddedKafka.getBrokersAsString());
}

Avro as Data Format

Avro is a data format quite
frequently used together with
Kafka and Big Data
solutions from the Hadoop area. Avro is a binary protocol, but also
offers a JSON-based representation. There are, for example, Avro
libraries for Python, Java, C#, C++, and C.

Avro supports schemas. Each dataset is saved or sent together with its
schema. For optimization, a reference to a
schema from the schema repository can be used rather than a copy of the
complete schema. Thereby, it is clear which format
the data has. The schema contains a documentation of the fields. This
ensures the long-term interpretation of the data, and that the
semantics of the data are clear. In addition, the data can be converted
to another format upon reading. This facilitates the
schema evolution.
New fields can be added when default values are defined, so that the
old data can be converted into the new schema by using the default
value. When fields are deleted, again a default value can be given so
that new data can be converted into the old schema. In addition, the
order of the fields can be changed because the field names are stored.

An advantage of the flexibility associated with schema migration is
that very old records can be processed with current software and the
current schema. Also, software based on an old schema can
process new data. Message-oriented middleware (MOM) typically does not
have such requirements because messages are not stored for very
long. Only
upon long-term record storage does schema evolution turn into a
challenge.

11.5 Recipe Variations

The example sends the data for the event along in the records. There
are alternatives to this (see section 11.4):

 	The entire dataset is always sent along – that is, the complete order.

 	The records could contain only an ID of the dataset for the order.
As a result, the recipient can retrieve just the information about the
dataset it really needs.

 	An individual topic exists for each client. All the records have
their own data structure adapted to the client.

Other MOMs

An alternative to Kafka would be another MOM. This might be a good
idea if the team has already plenty of experience with a different
MOM. Kafka differs from other MOMs in the long-term storing of records.
However, this is relevant only for event sourcing. And even then, every
microservice can save the events itself. Therefore, storage in the MOM
is not absolutely necessary. It can even be difficult because the
question of the data model arises.

Likewise, asynchronous communication with Atom (see
chapter 12) can be implemented. In a microservices
system, however, there should only be one solution for asynchronous
communication so that the effort for building and maintaining the
system does not become too great. Therefore, using Atom and Kafka or
any other MOM at the same time should be avoided.

Kafka can be combined with frontend integration (see
chapter 7). These approaches act at different
levels so that a combined use does not represent a problem. A
combination with synchronous mechanisms (see
chapter 13) makes less sense because the
microservices should communicate either synchronously or
asynchronously. Still, such a combination might be sensible in
situations where synchronous communication is necessary.

11.6 Experiments

 	Supplement the system with an additional microservice.

 	As an example, a microservice can be used which credits the
customer with a bonus depending on the value of the order or counts
the orders.

 	Of course, you can copy and modify one of the existing microservices.

 	Implement a Kafka consumer for the topic order of the Kafka
server kafka. The consumer should credit the customer with a bonus
when ordering or count the messages.

 	In addition, the microservice should also present an HTML page
with the information (customer bonuses or number of messages).

 	Place the microservice into a Docker image and reference it in the
docker-compose.yml. There you can also specify the name of the
Docker container.

 	Create in docker-compose.yml a link from the container apache
to the container with the new service, and from the container with the
new service to the container kafka.

 	The microservice must be accessible from the home page. To do this,
you have to create a load balancer for the new Docker container in
the file 000-default.conf in the Docker container apache. Use the
name of the Docker container, and then add a link to the
new load balancer to the file index.html.

 	It is possible to start additional instances of the shipping or
invoicing microservice. This can be done with docker-compose up -d
--scale shipping=2 or docker-compose up -d --scale invoicing=2.
docker logs mskafka_invoicing_2 can be used to look at the logs.
In the logs the microservice also indicates which Kafka partitions
it processes.

 	Kafka can also transform data with Kafka streams. Explore this
technology by searching for information about it on the web!

 	Currently, the example application uses JSON. Implement a
serialization with
Avro. A possible starting point for this
can be
https://www.codenotfound.com/2017/03/spring-kafka-apache-avro-example.html.

 	Log compaction is a possibility to delete superfluous records from a
topic. The
Kafka documentation
explains this feature. To activate log compaction, it has to be switched on when the topic is generated. See also
https://hub.docker.com/r/wurstmeister/kafka/.
Change the example in such a way that log compaction is activated.

11.7 Conclusion

Kafka offers an interesting approach for the asynchronous
communication between microservices.

Benefits

 	Kafka can store records permanently, which facilitates the use of
event sourcing in some scenarios. In addition, approaches
like Avro are available for solving problems like schema evolution.

 	The overhead for the consumers is low. They have to remember only
the position in each partition.

 	With partitions, Kafka has a concept for parallel processing and,
with consumer groups, it has a concept to guarantee the order of
records for consumers. In this way, Kafka can guarantee delivery to a
consumer and at the same time distribute the work among several
consumers.

 	Kafka can guarantee the delivery of messages. The consumer commits
the records it has successfully processed. If an error occurs, it does
not commit the record and tries to process it again.

Therefore, it is worth taking a look at this technology, especially
for microservices, even if other asynchronous communication mechanisms
are also useful.

Challenges

However, Kafka also provides some challenges.

 	Kafka is an additional infrastructure component. It must be
operated. Especially with messaging solutions, configuration is often
not easy.

 	If Kafka is used as event storage, the records must contain all the
data that all clients need. This is often not easy to implement
because of bounded context. (see
section 2.1).

Part III: Operation

The third part of this book discusses the operation of
microservices. In a microservices environment, a system consists of
many microservices. These
need to be operated. In the case of a deployment
monolith, just a single systems must be operated. Therefore,
operation is a very important topic for a
microservices environment.

Operation: Basics

First, chapter 19 introduces the basics
of operating microservices.

Monitoring with Prometheus

Chapter 20 deals with the monitoring of
microservices and describes Prometheus as concrete tool.

Log Data Analysis with the Elastic Stack

The topic of chapter 21 is the analysis of log
data. The Elastic Stack is introduced as concrete technical approach
for log data analysis.

Tracing with Zipkin

Chapter 22 explains how to use Zipkin
to trace requests across multiple microservices.

Service Meshes with Istio

Service meshes like Istio add proxies to the network traffic in a
microservices system. This allows support for monitoring, tracing and
resilience without any impact on the code. Chapter
23 discusses Istio as an example of a service
mesh.

Conclusion of the Book

The book ends with an outlook in chapter 24.

Table of Contents of the Complete Book

 	0 Introduction

 	0.1 Structure of the Book

 	0.2 Target Group

 	0.3 Prior Knowledge

 	0.4 Quick Start

 	0.5 Acknowledgements

 	0.6 Website

Part I: Principles of Microservices Architecture

 	1 Microservices

 	1.1 Microservices: Definition

 	1.2 Reasons for Microservices

 	1.3 Challenges

 	1.4 Variations

 	1.5 Conclusion

 	2 Micro and Macro Architecture

 	2.1 Bounded Context and Strategic Design

 	2.2 Technical Micro and Macro Architecture

 	2.3 Operations: Micro or Macro Architecture?

 	2.4 Give a Preference to Micro Architecture!

 	2.5 Organizational Aspects

 	2.6 Independent Systems Architecture Principles (ISA)

 	2.7 Variations

 	2.8 Conclusion

 	3 Migration

 	3.1 Reasons for Migrating

 	3.2 A Typical Migration Strategies

 	3.3 Alternative Strategies

 	3.4 Build, Operation, and Organization

 	3.5 Variations

 	3.6 Conclusion

Part II: Technology Stacks

 	4 Docker Introduction

 	4.1 Docker for Microservices: Reasons

 	4.2 Docker Basics

 	4.3 Docker Installation and Docker Commands

 	4.4 Installing Docker Hosts with Docker Machine

 	4.5 Dockerfiles

 	4.6 Docker Compose

 	4.7 Variations

 	4.8 Conclusion

 	5 Technical Micro Architecture

 	5.1 Requirements

 	5.2 Reactive

 	5.3 Spring Boot

 	5.4 Go

 	5.5 Variations

 	5.6 Conclusion

 	6 Self-contained System (SCS)

 	6.1 Reasons for the Term Self-contained Systems

 	6.2 Definition

 	6.3 An Example

 	6.4 SCS and Microservices

 	6.5 Benefits

 	6.6 Challenges

 	6.7 Variations

 	6.8 Conclusion

 	7 Concept: Frontend Integration

 	7.1 Frontend: Monolith or Modular?

 	7.2 Options

 	7.3 Resource-oriented Client Architecture (ROCA)

 	7.4 Challenges

 	7.5 Benefits

 	7.6 Variations

 	7.7 Conclusion

 	8 Recipe: Links and Client-side Integration

 	8.1 Overview

 	8.2 Example

 	8.3 Variations

 	8.4 Experiments

 	8.5 Conclusion

 	9 Recipe: Server-side Integration using Edge Side Includes (ESI)

 	9.1 ESI: Concepts

 	9.2 Example

 	9.3 Varnish

 	9.4 Recipe Variations

 	9.5 Experiments

 	9.6 Conclusion

 	10 Concept: Asynchronous Microservices

 	10.1 Definition

 	10.2 Events

 	10.3 Challenges

 	10.4 Advantages

 	10.5 Variations

 	10.6 Conclusions

 	11 Recipe: Messaging and Kafka

 	11.1 Message-oriented Middleware (MOM)

 	11.2 The Architecture of Kafka

 	11.3 Events with Kafka

 	11.4 Example

 	11.5 Recipe Variations

 	11.6 Experiments

 	11.7 Conclusion

 	12 Recipe: Asynchronous Communication with Atom and REST

 	12.1 The Atom Format

 	12.2 Example

 	12.3 Recipe Variations

 	12.4 Experiments

 	12.5 Conclusion

 	13 Concept: Synchronous Microservices

 	13.1 Definition

 	13.2 Benefits

 	13.3 Challenges

 	13.4 Variations

 	13.5 Conclusion

 	14 Recipe: REST with the Netflix Stack

 	14.1 Example

 	14.2 Eureka: Service Discovery

 	14.3 Router: Zuul

 	14.4 Load Balancing: Ribbon

 	14.5 Resilience: Hystrix

 	14.6 Recipe Variations

 	14.7 Experiments

 	14.8 Conclusion

 	15 Recipe: REST with Consul and Apache httpd

 	15.1 Example

 	15.2 Service Discovery: Consul

 	15.3 Routing: Apache httpd

 	15.4 Consul Template

 	15.5 Consul and Spring Boot

 	15.6 DNS and Registrator

 	15.7 Recipe Variations

 	15.8 Experiments

 	15.9 Conclusion

 	16 Concept: Microservices Platforms

 	16.1 Definition

 	16.2 Variations

 	16.3 Conclusion

 	17 Recipe: Docker Containers with Kubernettes

 	17.1 Kubernetes

 	17.2 The Example with Kubernetes

 	17.3 The Example in Detail

 	17.4 Additional Kubernetes Features

 	17.5 Recipe Variations

 	17.6 Experiments

 	17.7 Conclusion

 	18 Recipe: PaaS with Cloud Foundry

 	18.1 PaaS: Definition

 	18.2 Cloud Foundry

 	18.3 Example with Cloud Foundry

 	18.4 Recipe Variations

 	18.5 Experiments

 	18.6 Serverless

 	18.7 Conclusion

Part III: Operation

 	19 Concept: Operation

 	19.1 Why Operation Is Important

 	19.2 Approaches for the Operation of Microservices

 	19.3 Effects of the Discussed Technologies

 	19.4 Conclusion

 	20 Recipe: Monitoring with Prometheus

 	20.1 Basics

 	20.2 Metrics for Microservices

 	20.3 Metrics with Prometheus

 	20.4 Example with Prometheus

 	20.5 Recipe Variations

 	20.6 Experiments

 	20.7 Conclusion

 	21 Recipe: Log Analysis with the Elastic Stack

 	21.1 Basics

 	21.2 Logging with the Elastic Stack

 	21.3 Example

 	21.4 Recipe Variations

 	21.5 Experiments

 	21.6 Conclusion

 	22 Recipe: Tracing with Zipkin

 	22.1 Basics

 	22.2 Tracing with Zipkin

 	22.3 Example

 	22.4 Recipe Variations

 	22.5 Conclusion

Target Group
 * 0.3 Prior Knowledge
 * 0.4 Quick Start
 * 0.5 Acknowledgements
 * 0.6 Website

Part I: Principles of Microservices Architecture

 	1 Microservices

 	1.1 Microservices: Definition

 	1.2 Reasons for Microservices

 	1.3 Challenges

 	1.4 Variations

 	1.5 Conclusion

 	2 Micro and Macro Architecture

 	2.1 Bounded Context and Strategic Design

 	2.2 Technical Micro and Macro Architecture

 	2.3 Operations: Micro or Macro Architecture?

 	2.4 Give a Preference to Micro Architecture!

 	2.5 Organizational Aspects

 	2.6 Independent Systems Architecture Principles (ISA)

 	2.7 Variations

 	2.8 Conclusion

 	3 Migration

 	3.1 Reasons for Migrating

 	3.2 A Typical Migration Strategies

 	3.3 Alternative Strategies

 	3.4 Build, Operation, and Organization

 	3.5 Variations

 	3.6 Conclusion

Part II: Technology Stacks

 	4 Docker Introduction

 	4.1 Docker for Microservices: Reasons

 	4.2 Docker Basics

 	4.3 Docker Installation and Docker Commands

 	4.4 Installing Docker Hosts with Docker Machine

 	4.5 Dockerfiles

 	4.6 Docker Compose

 	4.7 Variations

 	4.8 Conclusion

 	5 Technical Micro Architecture

 	5.1 Requirements

 	5.2 Reactive

 	5.3 Spring Boot

 	5.4 Go

 	5.5 Variations

 	5.6 Conclusion

 	6 Self-contained System (SCS)

 	6.1 Reasons for the Term Self-contained Systems

 	6.2 Definition

 	6.3 An Example

 	6.4 SCS and Microservices

 	6.5 Benefits

 	6.6 Challenges

 	6.7 Variations

 	6.8 Conclusion

 	7 Concept: Frontend Integration

 	7.1 Frontend: Monolith or Modular?

 	7.2 Options

 	7.3 Resource-oriented Client Architecture (ROCA)

 	7.4 Challenges

 	7.5 Benefits

 	7.6 Variations

 	7.7 Conclusion

 	8 Recipe: Links and Client-side Integration

 	8.1 Overview

 	8.2 Example

 	8.3 Variations

 	8.4 Experiments

 	8.5 Conclusion

 	9 Recipe: Server-side Integration using Edge Side Includes (ESI)

 	9.1 ESI: Concepts

 	9.2 Example

 	9.3 Varnish

 	9.4 Recipe Variations

 	9.5 Experiments

 	9.6 Conclusion

 	10 Concept: Asynchronous Microservices

 	10.1 Definition

 	10.2 Events

 	10.3 Challenges

 	10.4 Advantages

 	10.5 Variations

 	10.6 Conclusions

 	11 Recipe: Messaging and Kafka

 	11.1 Message-oriented Middleware (MOM)

 	11.2 The Architecture of Kafka

 	11.3 Events with Kafka

 	11.4 Example

 	11.5 Recipe Variations

 	11.6 Experiments

 	11.7 Conclusion

 	12 Recipe: Asynchronous Communication with Atom and REST

 	12.1 The Atom Format

 	12.2 Example

 	12.3 Recipe Variations

 	12.4 Experiments

 	12.5 Conclusion

 	13 Concept: Synchronous Microservices

 	13.1 Definition

 	13.2 Benefits

 	13.3 Challenges

 	13.4 Variations

 	13.5 Conclusion

 	14 Recipe: REST with the Netflix Stack

 	14.1 Example

 	14.2 Eureka: Service Discovery

 	14.3 Router: Zuul

 	14.4 Load Balancing: Ribbon

 	14.5 Resilience: Hystrix

 	14.6 Recipe Variations

 	14.7 Experiments

 	14.8 Conclusion

 	15 Recipe: REST with Consul and Apache httpd

 	15.1 Example

 	15.2 Service Discovery: Consul

 	15.3 Routing: Apache httpd

 	15.4 Consul Template

 	15.5 Consul and Spring Boot

 	15.6 DNS and Registrator

 	15.7 Recipe Variations

 	15.8 Experiments

 	15.9 Conclusion

 	16 Concept: Microservices Platforms

 	16.1 Definition

 	16.2 Variations

 	16.3 Conclusion

 	17 Recipe: Docker Containers with Kubernettes

 	17.1 Kubernetes

 	17.2 The Example with Kubernetes

 	17.3 The Example in Detail

 	17.4 Additional Kubernetes Features

 	17.5 Recipe Variations

 	17.6 Experiments

 	17.7 Conclusion

 	18 Recipe: PaaS with Cloud Foundry

 	18.1 PaaS: Definition

 	18.2 Cloud Foundry

 	18.3 Example with Cloud Foundry

 	18.4 Recipe Variations

 	18.5 Experiments

 	18.6 Serverless

 	18.7 Conclusion

Part III: Operation

 	19 Concept: Operation

 	19.1 Why Operation Is Important

 	19.2 Approaches for the Operation of Microservices

 	19.3 Effects of the Discussed Technologies

 	19.4 Conclusion

 	20 Recipe: Monitoring with Prometheus

 	20.1 Basics

 	20.2 Metrics for Microservices

 	20.3 Metrics with Prometheus

 	20.4 Example with Prometheus

 	20.5 Recipe Variations

 	20.6 Experiments

 	20.7 Conclusion

 	21 Recipe: Log Analysis with the Elastic Stack

 	21.1 Basics

 	21.2 Logging with the Elastic Stack

 	21.3 Example

 	21.4 Recipe Variations

 	21.5 Experiments

 	21.6 Conclusion

 	22 Recipe: Tracing with Zipkin

 	22.1 Basics

 	22.2 Tracing with Zipkin

 	22.3 Example

 	22.4 Recipe Variations

 	22.5 Conclusion

 	23 Recipe: Service Mesh Istio

 	23.1 What is a Service Mesh?

 	23.2 Example

 	23.3 How Istio Works

 	23.4 Monitoring with Prometheus and Grafana

 	23.5 Tracing with Jaeger

 	23.6 Visualization with Kiali

 	23.6 Logging

 	23.7 Resilience

 	23.8 Challenges

 	23.9 Benefits

 	23.10 Variations

 	23.11 Experiments

 	23.12 Conclusion

 	24 And Now What?

 	Appendix A: Installation of the Environment

 	Appendix B: Maven Commands

 	Appendix C: Docker and Docker Compose Commands

OEBPS/images/leanpub_tip.png

OEBPS/images/leanpub_error.png

OEBPS/images/leanpub_exercise.png

OEBPS/images/leanpub_discussion.png

OEBPS/images/leanpub_warning.png

OEBPS/images/leanpub_question.png

OEBPS/images/leanpub_information.png

OEBPS/images/kafka-invoice-modell.png
Invoice
Including Customer Data

X

InvoicelLine
Including Item Data

OEBPS/images/kafka-ueberblick.png
) 8080 .
T80

HTTP Routing [Apache httpd j

8080 8080

_

OEBPS/images/kafka-topics-partitions.png
Committed
Offset (per
Consumer)

Topic

Partition

Record

Record

=
i |
J
y

Record

Partition

Record

Record

Record

Partition

1 Record

: Record

Record

P \ R 4 :
J

J\

:

Producer

Add New
Records

Newer
Records

OEBPS/images/kafka-topics-partitions-consumer-groups.png
e
Consumer Consumer 1 Consumer 2
(Group AN /)

7 <
(/ \I’opic)
[Partition 1 \ [Partition 2] ‘ Partition 3]

J

Producer

N

OEBPS/images/kafka-beispiel.png
(Producer)

{ Order Process

J
e]

Vs

Invoice Information
e.g. Prices

L Invoice (Consumer Group))

~ —~ ™

Shipping Information
e.g. Shipping Address

kShipping (Consumer Group))

OEBPS/images/kafka-order-modell.png
(Ordertablej>o—[0ustomer)
X

C ltem J>O—O<COrderLineJ

OEBPS/images/preface-teil-I.png
[

Part I: Principles of
Microservices

(Chapter 1 —)

Microservices)
(Chapter 2 — Micro &)
9 Macro Architecture)
(Chapter 3 —)
9 Migration D

OEBPS/images/preface-teil-II.png
Chapter 4 — Docker

-
Chapter 5 — Technical Micro
Architecture

\§

Z
Chapter 6 — Self-contained

Systems
L y

~
Chapter 7 — Concept: Chapter 8 — Recipe: Links &
Frontend Integration Client-side Integration

- 4
Chapter 9 — Recipe: Server-)
side Integration using Edge
Side Includes (ESI))
"Chth t Chapter 11 — Reci A

. apter 10 — Concept: apter 11 — Recipe:
[Partll Technology Stacks Asynchronous Microservices Messaging and Kafka

4

Chapter 12 — Recipe:)
Asynchronous Communication

with Atom and REST)

N
Chapter 13 — Concept: Chapter 14 — Recipe: REST
Synchronous Microservices with the Netflix Stack

UL

T

\
Chapter 15 — Recipe: REST
with Consul and Apache httpd/

~
Chapter 17 — Recipe: Docker

Microservice Platforms Containers with Kubernetes y

T =

[Chapter 16 — Concept:

~N
Chapter 18 — Recipe: PaaS
with Cloud Foundry

)

OEBPS/images/preface-teil-III.png
Chapter 20 — Recipe:
Monitoring with Prometheus

[Part Ill: Operation H

Chapter 19 — Concept:
Operations

J o/

Chapter 21 — Recipe: Log
Analysis with the Elastic Stack

\

J

Chapter 22 — Recipe: Tracing
with Zipkin

Chapter 23 — Recipe:
Service Mesh Istio

______/ U

OEBPS/images/leanpub-logo.png
[

Leanpub

OEBPS/images/title_page.jpg
Microservices

A Practical Guide
2nd Edition

Principles, Concepts, and
Recipes

Eberhard Wolff

