

Java For Testers
Learn Java fundamentals fast

Alan Richardson

This book is for sale at http://leanpub.com/javaForTesters

This version was published on 2015-08-26

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean
Publishing process. Lean Publishing is the act of publishing an in-progress ebook using
lightweight tools and many iterations to get reader feedback, pivot until you have the right
book and build traction once you do.

©2013 - 2015 Alan Richardson, Compendium Developments Ltd

http://leanpub.com/javaForTesters
http://leanpub.com
http://leanpub.com/manifesto

Tweet This Book!
Please help Alan Richardson by spreading the word about this book on Twitter!

The suggested tweet for this book is:

”I just bought Java For Testers” @eviltester #JavaForTesters

The suggested hashtag for this book is #JavaForTesters.

Find out what other people are saying about the book by clicking on this link to search for
this hashtag on Twitter:

https://twitter.com/search?q=#JavaForTesters

http://twitter.com
https://twitter.com/search?q=%23JavaForTesters
https://twitter.com/search?q=%23JavaForTesters

As ever. This book is dedicated to Billie and Keeran.

Contents

Welcome to this Sample . 1

Introduction . 2
Testers use Java differently . 2
Exclusions . 3
Windows and Mac supported . 3
Supporting Source Code . 4
About the Author . 5
Acknowledgments . 5

Chapter One - Basics of Java Revealed . 7
Java Example Code . 7

Chapter Two - Install the Necessary Software . 11
Introduction . 11
Do you already have JDK or Maven installed? . 12
Install The Java JDK . 14
Install Maven . 14
Install The IDE . 16
Create a Project using the IDE . 16
About your new project . 17
Add JUnit to the pom.xml file . 19
Summary . 20

Chapter Three - Writing Your First Java Code . 22
My First JUnit Test . 22
Prerequisites . 23
Create A JUnit Test Class . 23
Create a Method . 30

CONTENTS

Make the method a JUnit test . 31
Calculate the sum . 32
Assert the value . 33
Run the @Test method . 35
Summary . 36
References and Recommended Reading . 39

Chapter Four - Work with Other Classes . 41
Use @Test methods to understand Java . 41
Warnings about Integer . 48
Summary . 50
References and Recommended Reading . 50

Chapter Twenty Three - Next Steps . 52
Recommended Reading . 52
Recommended Videos . 56
Recommended Web Sites . 57
Next Steps . 57
References . 58

Appendix - IntelliJ Hints and Tips . 60
Shortcut Keys . 60
Code Completion . 61
Navigating Source Code . 61
Running a JUnit Test . 62
Loading Project Source . 62
Help Menu . 62
Summary . 63

Hope you enjoyed this Sample . 64
You can buy Java For Testers . 64
About The Author . 65

Welcome to this Sample
Hi,

Welcome to this sample of “Java For Testers” by Alan Richardson.

This sample is free, and contains the early chapters of the full book to allow you to see the
learning style and understand the approach the book takes.

There should be enough information in here to get you started with Java.

If you want to buy the full book then you can buy the ebook from leanpub:

• leanpub.com/javaForTesters¹

Any other purchasing options will be described on our main web site:

• JavaForTesters.com²

I hope you enjoy the sample and that it adds value to your learning.

¹https://leanpub.com/javaForTesters
²http://javafortesters.com

https://leanpub.com/javaForTesters
http://javafortesters.com
https://leanpub.com/javaForTesters
http://javafortesters.com

Introduction
This is an introductory text. At times it takes a tutorial approach and adopts step by step
instructions to coding. Some people more familiar with programming might find this slow.
This book is not aimed at those people.

This book is aimed at people who are approaching Java for the first time, specifically with
a view to adding automation to their test approach. I do not cover automation tools in this
book.

I do cover the basic Java knowledge needed to write and structure code when automating.

I primarily wrote this book for software testers, and the approach to learning is oriented
around writing automation code to support testing, rather than writing applications. As such
it might be useful for anyone learning Java, who wants to learn from a “test first” perspective.

Automation to support testing is not limited to testers anymore, so this book is suitable for
anyone wanting to improve their use of Java in automation: managers, business analysts,
users, and of course, testers.

Testers use Java differently

I remember when I started learning Java from traditional books, and I remember that I was
unnecessarily confused by some of the concepts that I rarely had to use e.g. creating manifest
files, and compiling from the command line.

Testers use Java differently.

Most Java books start with a ‘main’ class and show how to compile code and write simple
applications from the command line, then build up into more Java constructs and GUI
applications. When I write Java, I rarely compile it to a standalone application, I spend a lot
of time in the IDE, writing and running small checks and refactoring to abstraction layers.

By learning the basics of Java presented in this book, you will learn how to read and
understand existing code bases, and write simple checks using JUnit quickly. You will not
learn how to build and structure an application. That is useful knowledge, but it can be
learned after you know how to contribute to the Java code base with JUnit tests.

Introduction 3

My aim is to help you start writing automation code using Java, and have the basic knowledge
you need to do that. This book focuses on core Java functionality rather than a lot of
additional libraries, since once you have the basics, picking up a library and learning how to
use it becomes a matter of reading the documentation and sample code.

Exclusions

This is not a ‘comprehensive’ introduction. This is a ‘getting started’ guide. Even though I
concentrate on core Java, there are still aspects of Java that I haven’t covered in detail, I have
covered them ‘just enough’ to understand. e.g. inheritance, interfaces, enums, inner classes,
etc.

Some people may look disparagingly on the text based on the exclusions. So consider this an
opinionated introduction to Java because I know that I did not need to use many of those
exclusions for the first few years of my automation programming.

I maintain that there is a core set of Java that you need in order to start writing automation
code and start adding value to automation projects. I aim to cover that core in this book.

Essentially, I looked at the Java I needed when I started writing automation to support my
testing, and used that as scope for this book. While knowledge of Interfaces, Inheritance, and
enums, all help make my automation abstractions more readable and maintainable; I did not
use those constructs with my early automation.

I also want to keep the book small, and approachable, so that people actually read it and work
through it, rather than buying and leaving on their shelf because they were too intimidated
to pick it up. And that means leaving out the parts of Java, which you can pick up yourself,
once you have mastered the concepts in this book.

This book does not cover any Java 1.8 functionality. The highest version of Java required to
work with this book is Java 1.7. The code in this book will work with Java 1.8, I simply don’t
cover any of the new functionality added in Java 1.8 because I want you to learn the basics,
and start being productive quickly. After you complete this book, you should be able to pick
up the new features in Java 1.8 when you need them.

Windows and Mac supported

The source code was primarily written on Windows 7 and 8, using IntelliJ 13 and 14. But has
also been run on Mac using IntelliJ 14.

Instructions are provided for installation, and IntelliJ usage, on both Mac and Windows.

Introduction 4

Supporting Source Code

You can download the source code for this book from github.com³. The source contains the
examples and answers to exercises.

I suggest you work through the book and give it your best shot before consulting the source
code.

• github.com/eviltester/javaForTestersCode⁴

The source code has been organized into two high level source folders: main and test. The
full significance of these will be explained in later chapters. But for now, the test folder
contains all the JUnit tests that you see in this book. Each chapter has a package and beneath
that an exercises and an examples folder:

e.g.

• The main folder for Chapter 3 is:
– src\test\java\com\javafortesters\chap003myfirsttest

• it contains an examples folder with all the code used in the main body of the text
• it contains an exercises folder with all the code for the answers I created for the
exercises in Chapter 3

This shouldmake it easier for you to navigate the code base. And if you experience difficulties
typing in any of the code then you can compare it with the actual code to support the book.

To allow you to read the book without needing to have the source code open, I have added a
lot of code in the body of the book and you can find much of the code for the exercises in
the appendix.

The Appendix “IntelliJ Hints and Tips” has information on loading the source and offers a
reference section for helping you navigate and work with the source code in IntelliJ.

³https://github.com
⁴https://github.com/eviltester/javaForTestersCode

https://github.com
https://github.com/eviltester/javaForTestersCode
https://github.com
https://github.com/eviltester/javaForTestersCode

Introduction 5

About the Author

Alan Richardson has worked as a Software professional since 1995 (although it feels longer).
Primarily working with Software Testing, although he has written commercial software in
C++, and a variety of other languages.

Alan has a variety of on-line training courses, both free and commercial:

• “Selenium 2 WebDriver With Java”
• “Start Using Selenium WebDriver”
• “Technical Web Testing”

You can find details of his other books, training courses, conference papers and slides, and
videos, on his main company web site:

• CompendiumDev.co.uk⁵

Alan maintains a number of web sites:

• SeleniumSimplified.com⁶ : Web Automation using Selenium WebDriver
• EvilTester.com⁷ : Technical testing
• JavaForTesters.com⁸ : Java, aimed at software testers.

– JavaForTesters.com also acts as the support site for this book.

Alan tweets using the handle @eviltester⁹

Acknowledgments

This book was created as a “work in progress” on leanpub.com¹⁰. My thanks go to everyone
who bought the book in its early stages, this provided the continued motivation to create

⁵http://compendiumdev.co.uk
⁶http://seleniumsimplified.com
⁷http://eviltester.com
⁸http://javafortesters.com
⁹https://twitter.com/eviltester
¹⁰https://leanpub.com/javaForTesters

http://compendiumdev.co.uk
http://seleniumsimplified.com
http://eviltester.com
http://javafortesters.com
https://twitter.com/eviltester
https://leanpub.com/javaForTesters
http://compendiumdev.co.uk
http://seleniumsimplified.com
http://eviltester.com
http://javafortesters.com
https://twitter.com/eviltester
https://leanpub.com/javaForTesters

Introduction 6

something that added value, and then spend the extra time needed to add polish and
readability.

Special thanks go to the following people who provided early and helpful feedback during
the writing process: Jay Gehlot, Faezeh Seyedarabi, Szymon Kazmierczak, Srinivas Kadiyala,
Tony Bruce, James ‘Drew’ Cobb, Adrian Rapan, Ajay Bansode.

I am also grateful to every Java developer that I have worked with who took the time to
explain their code. You helped me observe what a good developer does and how they work.
The fact that you were good, forced me to ‘up my game’ and improve both my coding and
testing skills.

All mistakes in this book are my fault. If you find any, please let me know via compendi-
umDev.co.uk/contact¹¹ or via any of the sites mentioned above.

¹¹http://www.compendiumdev.co.uk/contact

http://www.compendiumdev.co.uk/contact
http://www.compendiumdev.co.uk/contact
http://www.compendiumdev.co.uk/contact

Chapter One - Basics of Java Revealed

..

Chapter Summary
An overview of Java code to set the scene:

• class is the basic building block
• a class has methods
• method names start with lowercase letters
• class names start with uppercase letters
• a JUnit test is a method annotated with @Test

• JUnit test methods can be run without creating an application

In this first chapter I will show you Java code, and the language I use to describe it, with little
explanation.

I do this to provide you with some context. I want to wrap you in the language typically
used to describe Java code. And I want to show you small sections of code in context. I don’t
expect you to understand it yet. Just read the pages which follow, look at the code, soak it in,
accept that it works, and is consistent.

Then in later pages, I will explain the code constructs in more detail, you will write some
code, and I’ll reinforce the explanations.

Java Example Code

Remember - just read the following section
Just read the following section, and don’t worry if you don’t understand it all
immediately. I explain it in later pages. I have emphasized text which I will
explain later. So if you don’t understand what an emphasized word means, then
don’t worry, you will in a few pages time.

Chapter One - Basics of Java Revealed 8

An empty class

A class is the basic building block that we use to build our Java code base.

All the code that we write to do stuff, we write inside a class. I have named this class
AnEmptyClass.

1 package com.javafortesters.chap001basicsofjava.examples.classes;

2

3 public class AnEmptyClass {

4 }

Just like your name, class names start with an uppercase letter in Java. I’m using something
called Camel Case to construct the names, instead of spaces to separate words, we write the
first letter of each word in uppercase.

The first line is the package that I added the class to. A package is like a directory on the file
system, this allows us to find, and use, the class in the rest of our code.

A class with a method

A class, on its own, doesn’t do anything. We have to add methods to the class before we can
do anything. Methods are the commands we can call, to make something happen.

In the following example I have created a new class called AClassWithAMethod, and this class
has a method called aMethodOnAClass which, when called, prints out "Hello World" to the
console.

1 package com.javafortesters.chap001basicsofjava.examples.classes;

2

3 public class AClassWithAMethod {

4

5 public void aMethodOnAClass(){

6 System.out.println("Hello World");

7 }

8 }

Method names start with lowercase letters.

When we start learning Java we will call the methods of our classes from within JUnit tests.

Chapter One - Basics of Java Revealed 9

A JUnit Test

For the code in this book we will use JUnit. JUnit is a commonly used library which makes
it easy for us to write and run Java code with assertions.

A JUnit test is simply a method in a class which is annotated with @Test (i.e. we write @Test
before the method declaration).

1 package com.javafortesters.chap001basicsofjava.examples.classes;

2

3 import org.junit.Test;

4

5 public class ASysOutJunitTest {

6

7 @Test

8 public void canOutputHelloWorldToConsole(){

9 AClassWithAMethod myClass = new AClassWithAMethod();

10 myClass.aMethodOnAClass();

11 }

12 }

In the above code, I instantiate a variable of type AClassWithAMethod (which is the name I
gave to the class earlier). I had to add this class to the package, and I had to import the @Test
annotation before I could use it, and I did that as the first few lines in the file.

I can run this method from the IDE without creating a Java application because I have used
JUnit and annotated the method with @Test.

When I run this method then I will see the following text printed out to the Java console in
my IDE:

Hello World

Summary

I have thrown you into the deep end here; presenting you with a page of possible gobbledy-
gook. And I did that to introduce you to a the Java Programming Language quickly.

Java Programming Language Concepts:

• Class

Chapter One - Basics of Java Revealed 10

• Method
• JUnit
• Annotation
• Package
• Variables
• Instantiate variables
• Type
• Import

Programming Convention Concepts:

• Camel Case
• JUnit Tests are Java methods annotated with @Test

Integrated Development Environment Concepts:

• Console

Over the next few chapters, I’ll start to explain these concepts in more detail.

Chapter Two - Install the Necessary
Software

..

Chapter Summary
In this chapter you will learn the tools you need to program in Java, and how to install
them. You will also find links to additional FAQs and Video tutorials, should you get stuck.

The tools you will install are:

• Java Development Kit
• Maven
• An Integrated Development Environment (IDE)

You will also learn how to create your first project.

When you finish this chapter you will be ready to start coding.

I suggest you first, read this whole chapter, and then work through the chapter from the
beginning and follow the steps listed.

Introduction

Programming requires you to setup a bunch of tools to allow you to work.

For Java, this means you need to install:

• JDK - Java Development Kit
• IDE - Integrated Development Environment

For this book we are also going to install:

• Maven - a dependency management and build tool

Chapter Two - Install the Necessary Software 12

Installing Maven adds an additional degree of complexity to the setup process, but trust me.
It will make the whole process of building projects and taking your Java to the next level a
lot easier.

I have created a support page for installation, with videos and links to troubleshooting guides.

• JavaForTesters.com/install¹²

If you experience any problems that are not covered in this chapter, or on the support pages,
then please let me know so I can try to help, or amend this chapter, and possibly add new
resources to the support page.

Do you already have JDK or Maven installed?

Some of you may already have these tools installed with your machine. The first thing we
should do is learn how to check if they are installed or not.

Java JDK

Many of you will already have a JRE installed (Java Runtime Environment), but when
developing with Java we need to use a JDK.

If you type javac -version at your command line and get an error saying that javac can

not be found (or something similar). Then you need to install and configure a JDK.

If you see something similar to:

> javac -version

javac 1.7.0_10

Then you have a JDK installed. It is worth following the instructions below to check if your
installed JDK is up to date, but if you have a 1.7.x JDK (or higher) installed then you have a
good enough version to work through this book without amendment. If your JDK is version
1.6 then some of the code examples will not work.

¹²http://javafortesters.com/install

http://javafortesters.com/install
http://javafortesters.com/install

Chapter Two - Install the Necessary Software 13

Java Has Multiple Versions
The Java language improves over time. With each new version adding new
features. If you are unfortunate enough to not be allowed to install Java 1.7 at
work (then I suggest you work through this book at home, or on a VM), then
parts of the source code will not work and the code you download for this book
will throw errors.

Specifically, we cover the following features introduced in Java 1.7:

• The Diamond operator <> in the Collections chapters
• Binary literals e.g. 0b1001
• Underscores in literals e.g. 9_000_000_000L
• switch statements using Strings
• Paths and Path from java.nio.file

The above statements may not make sense yet, but if you are using a version of
Java lower than 1.7 then you can expect to see these concepts throw errors with
JDK 1.6 or below.

Install Maven

Maven requires a version of Java installed, so if you checked for Java and it wasn’t there, you
will need to install Maven.

If you type mvn -version at your command line, and receive an error that mvn can not

be found (or something similar). Then you need to install and configure Maven before you
follow the text in this book.

If you see something similar to:

> mvn -version

Apache Maven 3.0.4 (r1232337; 2012-01-17 08:44:56+0000)

Maven home: C:\mvn\apache-maven-3.0.4

Java version: 1.7.0_10, vendor: Oracle Corporation

Java home: C:\Program Files\Java\jdk1.7.0_10\jre

Default locale: en_GB, platform encoding: Cp1252

OS name: "windows 8", version: "6.2", arch: "amd64", family: "windows"

Then you have Maven installed. This book doesn’t require a specific version of Maven, but
having a version of 3.x.x or above should be fine.

Chapter Two - Install the Necessary Software 14

Install The Java JDK

The Java JDK can be downloaded from oracle.com. If you mistakenly download from
java.com then you will be downloading the JRE, and for development work we need the
JDK.

• oracle.com/technetwork/java/javase/downloads¹³

From the above site you should follow the installation instructions for your specific platform.

You can check the JDK is installed by opening a new command line and running the
command:

javac -version

This should show you the version number which you downloaded and installed from
oracle.com

Install Maven

Maven is a dependency management and build tool. We will use it to add JUnit to our project
and write our code based on Maven folder conventions to make it easier for others to review
and work with our code base.

The official Maven web site is maven.apache.org¹⁴. You can download Maven and find
installation instructions on the official web site.

Download Maven by visiting the download page:

• maven.apache.org/download.cgi¹⁵

The installation instructions can also be found on the download page:

• maven.apache.org/download.cgi#Installation_Instructions¹⁶

¹³http://www.oracle.com/technetwork/java/javase/downloads/index.html
¹⁴http://maven.apache.org
¹⁵http://maven.apache.org/download.cgi
¹⁶http://maven.apache.org/download.cgi#Installation_Instructions

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://maven.apache.org
http://maven.apache.org/download.cgi
http://maven.apache.org/download.cgi#Installation_Instructions
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://maven.apache.org
http://maven.apache.org/download.cgi
http://maven.apache.org/download.cgi#Installation_Instructions

Chapter Two - Install the Necessary Software 15

I summarize the instructions below:

For Windows:

• Unzip the distribution archive where you want to install Maven
• Create an M2_HOME user/environment variable that points to the above directory
• Create an M2 user/environment variable that points to M2_HOME\bin

– on Windows %M2_HOME%\bin
* sometimes onWindows, I find I have to avoid re-using the M2_HOME variable
and instead copy the path in again

– on Unix $M2_HOME/bin

• Add the M2 user/environment variable to your path
• Make sure you have a JAVA_HOME user/environment variable that points to your JDK
root directory

• Add JAVA_HOME to your path

For Mac:

• Unzip the distribution archive
• if you don’t have a /usr/local folder then create one with sudo mkdir /usr/local

from a terminal
• extract the contents into an /usr/local/apache-maven

• edit ∼/.bash_profile

• add the following lines to your .bash_profile file
– export M2_HOME=/usr/local/apache-maven

– export M2=$M2_HOME/bin

– export PATH=$M2:$PATH

– export JAVA_HOME="$(/usr/libexec/java_home)"

• save your .bash_profile file
• from a terminal enter source ∼/.bash_profile

You can check it is installed by opening up a new command line and running the command:

mvn -version

This should show you the version number that you just installed and the path for your JDK.

I recommend you take the time to read the “Maven in 5 Minutes” guide on the official Maven
web site:

Chapter Two - Install the Necessary Software 16

• maven.apache.org/guides/getting-started/maven-in-five-minutes.html¹⁷

Install The IDE

While the code in this book will work with any IDE, I recommend you install IntelliJ. I find
that IntelliJ works well for beginners since it tends to pick up paths and default locations
better than Eclipse.

For this book, I will use IntelliJ and any supporting videos I create for this book, or any short
cut keys I mention relating to the IDE will assume you are using IntelliJ.

The official IntelliJ web site is jetbrains.com/idea¹⁸

IntelliJ comes in two versions a ‘Community’ edition which is free, and an ‘Ultimate’ edition
which you have to pay for.

For the purposes of this book, and most of your automation development work, the
‘Community’ edition will meet your needs.

Download the Community Edition IDE from:

• jetbrains.com/idea/download¹⁹

The installation should use the standard installation approach for your platform.

When you are comfortable with the concepts in this book, you can experiment with other
IDEs e.g. Eclipse²⁰ or Netbeans²¹.

I suggest you stick with IntelliJ until you are more familiar with Java because then you
minimize the risk of issues with the IDE confusing you into believing that you have a problem
with your Java.

Create a Project using the IDE

To create your first project, use IntelliJ to do the hard work. The instructions below are
for IntelliJ 14, but should be very similar for future versions of IntelliJ. Remember to check
JavaForTesters.com/install²² for updates and additional videos.

¹⁷http://maven.apache.org/guides/getting-started/maven-in-five-minutes.html
¹⁸http://www.jetbrains.com/idea
¹⁹http://www.jetbrains.com/idea/download
²⁰http://www.eclipse.org
²¹https://netbeans.org
²²http://javafortesters.com/install

http://maven.apache.org/guides/getting-started/maven-in-five-minutes.html
http://www.jetbrains.com/idea
http://www.jetbrains.com/idea/download
http://www.eclipse.org
https://netbeans.org
http://javafortesters.com/install
http://maven.apache.org/guides/getting-started/maven-in-five-minutes.html
http://www.jetbrains.com/idea
http://www.jetbrains.com/idea/download
http://www.eclipse.org
https://netbeans.org
http://javafortesters.com/install

Chapter Two - Install the Necessary Software 17

• Start your installed IntelliJ
• Either use the “Create New Project” wizard that starts when you first run the
application or, File \ New Project

• choose Maven
– If maven hasn’t filled in the Project SDK automatically then select [New] and
choose the location of your JDK

• Press [Next]
• For GroupId and ArtifactId enter the name of your project, I used ‘javaForTesters’
• Leave the version as the default ‘1.0-SNAPSHOT’, and press [Next]
• Enter a project name, I used ‘javaForTesters’
• Select a location to save the project source files
• select Finish
• select OK

You should be able to use all the default settings for the wizard.

About your new project

The New Project wizard should create a new folder with a structure something like the
following:

+ javaForTesters

+ .idea

+ src

+ main

+ java

+ resources

+ test

+ java

javaForTesters.iml

pom.xml

In the above hierarchy,

• the .idea folder is where most of the IntelliJ configuration files will be stored,
• the .iml file has other IntelliJ configuration details,

Chapter Two - Install the Necessary Software 18

• the pom.xml file is your Maven project configuration file.

If the wizard created any .java files in any of the directories then you can delete them as
they are not important. You will be starting this project from scratch.

The above directory structure is a standard Maven structure. Maven expects certain files to
be in certain directories to use the default Maven configuration. Since you are just starting
you can leave the directory structure as it is.

Certain conventions that you will follow to make your life as a beginning developer easier:

• Add your JUnit Test Classes into the src\test\java folder hierarchy
• When you create a JUnit Test Class, make sure you append Test to the Class name

The src\main\java folder hierarchy is for Java code that is not used for asserting behaviour.
Typically this is application code. We will use this for our abstraction layer code. We could
add all the code we create in this book in the src\test\java hierarchy but where possible I
split the abstraction code into a separate folder.

The above convention description may not make sense at the moment, but hopefully it will
become clear as you work through the book. Don’t worry about it now.

The pom.xml file will probably look like the following:

<?xml version="1.0" encoding="UTF-8"?>

<project xmlns="http://maven.apache.org/POM/4.0.0"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://maven.apache.org/POM/4.0.0

http://maven.apache.org/xsd/maven-4.0.0.xsd">

<modelVersion>4.0.0</modelVersion>

<groupId>javaForTesters</groupId>

<artifactId>javaForTesters</artifactId>

<version>1.0-SNAPSHOT</version>

</project>

This is the basics for a blank project file and defines the name of the project.

You can find information about the pom.xml file on the official Maven site.

• maven.apache.org/pom.html²³

²³http://maven.apache.org/pom.html

http://maven.apache.org/pom.html
http://maven.apache.org/pom.html

Chapter Two - Install the Necessary Software 19

Add JUnit to the pom.xml file

We will use a library called JUnit to help us run our code.

• junit.org²⁴

You can find installation instructions for using JUnit with Maven on the JUnit web site.

• github.com/junit-team/junit/wiki/Download-and-Install²⁵

We basically edit the pom.xml file to include a dependency on JUnit. We do this by creating
a dependencies XML element and a dependency XML element which defines the version of
JUnit we want to use. At the time of writing it was version 4.11

The pom.xml file that we will use for this book, only requires a dependency on JUnit, so it
looks like this:

<?xml version="1.0" encoding="UTF-8"?>

<project xmlns="http://maven.apache.org/POM/4.0.0"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://maven.apache.org/POM/4.0.0

http://maven.apache.org/xsd/maven-4.0.0.xsd">

<modelVersion>4.0.0</modelVersion>

<groupId>javaForTesters</groupId>

<artifactId>javaForTesters</artifactId>

<version>1.0-SNAPSHOT</version>

<packaging>jar</packaging>

<properties>

<project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>

</properties>

<dependencies>

<dependency>

²⁴http://junit.org
²⁵https://github.com/junit-team/junit/wiki/Download-and-Install

http://junit.org
https://github.com/junit-team/junit/wiki/Download-and-Install
http://junit.org
https://github.com/junit-team/junit/wiki/Download-and-Install

Chapter Two - Install the Necessary Software 20

<groupId>junit</groupId>

<artifactId>junit</artifactId>

<version>4.11</version>

</dependency>

</dependencies>

<build>

<plugins>

<plugin>

<groupId>org.apache.maven.plugins</groupId>

<artifactId>maven-compiler-plugin</artifactId>

<version>3.1</version>

<configuration>

<source>1.7</source>

<target>1.7</target>

</configuration>

</plugin>

</plugins>

</build>

</project>

You can see I also added a build section with a maven-compiler-plugin. This was mainly
to cut down on warnings in the Maven output. If you really want to make the pom.xml
file small you could get away with adding the <dependencies> XML element and all its
containing information about JUnit.

Amend your pom.xml file to contain the dependencies and build elements above. IntelliJ
should download the JUnit dependency ready for you to write your first JUnit Test, in the
next chapter.

You can find more information about this plugin on the Maven site:

• maven.apache.org/plugins/maven-compiler-plugin²⁶

Summary

If you followed the instructions in this chapter then you should now have:

²⁶http://maven.apache.org/plugins/maven-compiler-plugin

http://maven.apache.org/plugins/maven-compiler-plugin
http://maven.apache.org/plugins/maven-compiler-plugin

Chapter Two - Install the Necessary Software 21

• Maven installed - mvn -version

• JDK installed - javac -version

• IntelliJ IDE installed
• Created your first project
• A pom.xml file with JUnit as a dependency

I can’t anticipate all the problems you might have installing the three tools listed in this
chapter (JDK, Maven, IDE).

The installation should be simple, but things can go wrong.

I have created a few videos on the JavaForTesters.com/install²⁷ site which show how to install
the various tools.

• JavaForTesters.com/install²⁸

I added some Maven Troubleshooting Hints and Tips to the “Java For Testers” blog:

• javafortesters.blogspot.co.uk/2013/08/maven-troubleshooting-faqs-and-tips.html²⁹

If you do get stuck then try and use your favourite search engine and copy and paste the
exact error message you receive into the search engine and you’ll probably find someone
else has already managed to resolve your exact issue.

²⁷http://javafortesters.com
²⁸http://javafortesters.com/install
²⁹http://javafortesters.blogspot.co.uk/2013/08/maven-troubleshooting-faqs-and-tips.html

http://javafortesters.com
http://javafortesters.com/install
http://javafortesters.blogspot.co.uk/2013/08/maven-troubleshooting-faqs-and-tips.html
http://javafortesters.com
http://javafortesters.com/install
http://javafortesters.blogspot.co.uk/2013/08/maven-troubleshooting-faqs-and-tips.html

Chapter Three - Writing Your First Java
Code

..

Chapter Summary
In this tutorial chapter you will follow along with the text and create your first JUnit test.
You will learn:

• How to organize your code and import other classes
• Creating classes and naming classes as JUnit tests
• Making Java methods run as JUnit tests
• Adding asserts to report errors during the execution
• How to run JUnit tests from the IDE and the command line
• How to write basic arithmetic statements in Java
• About Java comments

Follow along with the text, and use the example code as a guide. If you have issues then
compare the code you have written carefully against the code in the book.

In this chapter we will take a slightly different approach. We will advance step-by-step
through the chapter and we will write a simple method which we will run as a JUnit test.

My First JUnit Test

The code will calculate the answer to “2+2”, and then assert that the answer is “4”.

The code we write will be very simple, and will look like the following:

Chapter Three - Writing Your First Java Code 23

1 package com.javafortesters.chap003myfirsttest.examples;

2 import org.junit.Test;

3 import static org.junit.Assert.assertEquals;

4

5 public class MyFirstTest {

6

7 @Test

8 public void canAddTwoPlusTwo(){

9 int answer = 2+2;

10 assertEquals("2+2=4", 4, answer);

11 }

12 }

I’m showing you this now, so you have an understanding of what we are working towards.
If you get stuck, you can refer back to this final state and compare it with your current state
to help resolve any problems.

Prerequisites

I’m assuming that you have followed the setup chapter and have the following in place:

• JDK Installed
• IDE Installed
• Maven Installed
• Created a project
• Added JUnit to the project pom.xml

We are going to add all the code we create in this book to the project you have created.

Create A JUnit Test Class

The first thing we have to do is create a class, to which we will add our JUnit test method.

A class is the basic building block for our Java code. So we want to create a class called
MyFirstTest.

The name MyFirstTest has some very important features.

Chapter Three - Writing Your First Java Code 24

• It starts with an uppercase letter
• It has the word Test at the end
• It uses camel case

It starts with an uppercase letter because, by convention, Java classes start with an
uppercase letter. By convention means that it doesn’t have to. You won’t see Java throw
any errors if you name the class myFirstTest with a lowercase letter. When you run the
code, Java won’t complain.

But everyone that you work with will.

We expect Java classes to start with an uppercase letter because they are proper names.

Trust me.

Get in the habit of naming your classes with the first letter in uppercase. Then when you
read code you can tell the difference between a class and a variable, and you’ll expect the
same from code that other people have written.

It has the word Test at the end. We can take advantage of the ‘out of the box’ Maven
functionality to run our JUnit tests from the command line, instead of the IDE, by typing
mvn test. This might not seem important now, but at some point we are going to want to
run our code automatically as part of a build process. And we can make that easier if we add
Test in the Class name, either as the start of the class name, or at the end. By naming our
classes in this way, Maven will automatically run our JUnit test classes at the appropriate
part of the build process.

Incorrectly Named Classes Will Run From the IDE

Very often we run our JUnit test code from the IDE. And the IDE will run the
methods in JUnit test classes even if the classes are not named as Maven requires.
If we do not name a class correctly then it will not run from the command line
when we type mvn test but because we saw it run in the IDE, we believe it is
running.

This leaves us thinking we have more coverage than we actually do.

It uses camel case where each ‘word’ in a string of concatenated words starts with an
uppercase letter. This again is a Java convention, it is not enforced by the compiler. But
people reading your code will expect to see it written like this.

Chapter Three - Writing Your First Java Code 25

Maven Projects need to be imported
As you code, if you see a little pop up in IntelliJ which says “Maven Projects need
to be imported”. Click the “Enable Auto-Import”. This will make your life easier
as it will automatically add import statements in your code and update when you
change your pom.xml file.

If you miss this then you can set the option later using ‘Maven. Importing’³⁰
from Settings.

To create the class

In the IDE, open up the Project hierarchy so that you can see the src\test\java branch and
the src\main\java branch. The Project hierarchy is shown be default as the tree structure
on the left of the screen, and you can make if visible (if you close it) by selecting the Project
button shown vertically on the left of the IntelliJ GUI.

My project hierarchy looks like this:

+ javaForTesters

+ .idea

+ src

+ main

+ java

+ resources

+ test

+ java

.idea is the IntelliJ folder, so I can ignore that.

I right click on the java folder under test and select the New \ Java Class menu item.

Or, I could click on the java folder under test and use the keyboard shortcut alt + insert,
and select Java Class (on a Mac use ctrl + n)

Type in the name of the Java class that you want to create i.e. MyFirstTest and select [OK]

Don’t worry about the package structure for now. We can easily manually move our code
around later. Or have IntelliJ move it around for us using refactoring³¹.

³⁰https://www.jetbrains.com/idea/help/maven-importing.html
³¹http://refactoring.com/

https://www.jetbrains.com/idea/help/maven-importing.html
http://refactoring.com/
https://www.jetbrains.com/idea/help/maven-importing.html
http://refactoring.com/

Chapter Three - Writing Your First Java Code 26

Template code

You might find that you have a code block of comments which IntelliJ added automatically

/**

* Created with IntelliJ IDEA.

* User: Alan

* Date: 24/04/13

* Time: 11:48

* To change this template use File | Settings | File Templates.

*/

You can ignore this code as it is a comment. You can delete all those lines if you want to.

Introduction to Comments In Java
Comments are explanatory text that is not executed.

You can use // to comment out to the end of a line.

You can comment out blocks of text by using /* and */

Where /* delimits the start of the comment and */ delimits the end of the
comment.

So /* everything inside is a comment */

/* Comments created with

forward slash asterisk

can span multiple lines */

Add the class to a package

IntelliJ will have created an empty class for us. e.g.

public class MyFirstTest {

}

And since we didn’t specify a package, it will be at the root level of our test\java hierarchy.

We have two ways of creating a package and then moving the class into it:

Chapter Three - Writing Your First Java Code 27

• Manually create the package and drag and drop the class into it
• Add the package statement into our code and have IntelliJ move the class

Manually create the package and drag and drop the class into it by right clicking on the
java folder under test and selecting New \ Package, then enter the package name you want
to create.

For this book, I’m going to suggest that you use the top level package structure:

• com.javafortesters

And then name any sub structures as required. So for this class we could create a package
called com.javafortesters.chap003myfirsttest.examples. You don’t have to use the
chap003 prefix, but it might help you trace your code back to the chapter in the book. I
use this convention to help you find the example and exercise source code in the source
download.

Package Naming
In Java, package names tend to be all lowercase, and not use camelCase.

If we want to, we can add the package statement into our code and have IntelliJ move
the class:

Add the following line as the first line in the class:

package com.javafortesters.chap003myfirsttest.examples;

The semi-colon at the end of the line is important because Java statements end with a semi-
colon.

IntelliJ will highlight this line with a red underscore because our class is not in a folder
structure that represents that package.

IntelliJ can do more than just tell us what our problems are, it can also fix this problem for
us if we click the mouse in the underscored text, and then press the keys alt + return.

IntelliJ will show a pop up menu which will offer us the option to:

Move to package com.javafortesters.chap003myfirsttest.examples

Chapter Three - Writing Your First Java Code 28

Select this option and IntelliJ will automatically move the class to the correct location.

You could create the package first
Of course, I could have created the package first, but sometimes I like to create
the classes, and concentrate on the code, before I concentrate on the ordering and
categorization of the code.

You will develop your own style of coding as you become more experienced. I
like to have the IDE do as much work for me as I can, while I remain in the ‘flow’
of coding.

The Empty Class Explained

package com.javafortesters.chap003myfirsttest.examples;

public class MyFirstTest {

}

If you’ve followed along then you will have an empty class, in the correct package and the
Project windowwill show a directory structure that matches the package hierarchy you have
created.

Package Statement

The package statement is a line of code which defines the package that this class belongs in.

package com.javafortesters.chap003myfirsttest.examples;

When we want to use this class in our later code then we would import the class from this
package.

The packagemaps on to the physical folder structure beneath your src\test folder. So if you
look in explorer under your project folder you will see that the package is actually a nested
set of folders.

Chapter Three - Writing Your First Java Code 29

+ src

+ test

+ java

And underneath the java folder you will have a folder structure that represents the package
structure.

+ com

+ javafortesters

+ chap003myfirsttest

+ examples

Java classes only have to be uniquely named within a package. So I could create another class
called MyFirstTest and place it into a different package in my source tree and Java would
not complain. I would simply have to import the correct package structure to get the correct
version of the class.

Class Declaration

The following lines, are our class declaration.

public class MyFirstTest {

}

We have to declare a class before we use it. And when we do so, we are also defining the
rules about how other classes can use it too.

Here the class has public scope. This means that any class, in any package, can use this class
if they import it.

Java has more scope declarations
Java has other scope declarations, like private and protected but we don’t have
to concern ourselves with those yet.

When we create classes that will be used for JUnit tests, we need to make them public so
that JUnit can use them.

Chapter Three - Writing Your First Java Code 30

The { and } are block markers. The opening brace { delimits the start of a block, and the
closing brace } delimits the end of a block.

All the code that we write for a class has to go between the opening and closing block that
represents the class body.

In this case the class body is empty, because we haven’t written any code yet, but we still
need to have the block markers, otherwise it will be invalid Java syntax and your IDE will
flag the code as being in error.

Create a Method

We are going to create a method to add two numbers. Specifically 2+2.

I create a new method by typing out the method declaration:

public void canAddTwoPlusTwo(){

}

Remember, the method declaration is enclosed inside the class body block:

public class MyFirstTest {

public void canAddTwoPlusTwo(){

}

}

• public

This method is declared as publicmeaning that any class that can use MyFirstTest can call
the method.

When we use JUnit, any method that we want to use as a JUnit test should be declared as
public.

• void

The void means that the method does not return a value when it is called. We will cover
this in detail later, but as a general rule, if you are going to make a method a JUnit test, you
probably want to declare it as void.

Chapter Three - Writing Your First Java Code 31

• ()

Every method declaration has to define what parameters the method can be called with. At
the moment we haven’t explained what this means because our method doesn’t take any
parameters, and so after the method name we have “()”, the open and close parentheses. If
we did have any parameters they would be declared inside these parentheses.

• {}

In order to write code in a method we add it in the code block of the method body i.e. inside
the opening and closing braces.

We haven’t written any code in the method yet, so the code block is empty.

Naming JUnit Test Methods
A lot of people don’t give enough thought to JUnit test method names. And use
names like addTest or addNumbers. I try to write names that:

• explain the purpose of the method without writing additional comments
• describe the capability or function we want to check
• show the scope of what is being checked

Make the method a JUnit test

We can make the method a JUnit test. By annotating it with @Test.

In this book we will learn how to use annotations. We rarely have to create custom
annotations when automating, so we won’t cover how to create your own annotations in
this book.

JUnit implements a few annotations that we will learn. The first, and most fundamental, is
the @Test annotation. JUnit only runs the methods which are annotated with @Test as JUnit
tests. We can have additional methods in our classes without the annotation, and JUnit will
not try and run those.

Because the @Test annotation comes with JUnit we have to import it into our code.

When you type @Test on the line before the method declaration. The IDE will highlight it as
an error.

Chapter Three - Writing Your First Java Code 32

@Test

public void canAddTwoPlusTwo(){

}

When we click on the line with the error and press the key combination alt + return then
we will receive an option to:

Import Class

Choosing that option will result in IntelliJ adding the import statement into our class.

import org.junit.Test;

We have to make sure that we look at the list of import options carefully. Sometimes we will
be offered multiple options, because there may be many classes with the same name, where
the difference is the package they have been placed into.

If you select the wrong import
If you accidentally select the wrong import then simply delete the existing import
statement from the code, and then use IntelliJ to alt + return and import the
correct class and package.

Calculate the sum

To actually calculate the sum 2+2 I will need to create a variable, then I can store the result
of the calculation in the variable.

int answer = 2+2;

Variables are a symbol which represent some other value. In programming, we use them
to store values: strings, integers etc. so that we can use them and amend them during the
program code.

I will create a variable called answer.

I will make the variable an ‘int’. int declares the type of variable. int is short for integer
and is a primitive type, so doesn’t have a lot of functionality other than storing an integer
value for us. An int is not a class so doesn’t have any methods.

Chapter Three - Writing Your First Java Code 33

The symbol 2 in the code is called a numeric literal, or an integer literal.

An int has limits
An int can store values from -2,147,483,648 to 2,147,483,647. e.g.

int minimumInt = -2147483648;

int maximumInt = 2147483647;

When I create the variable I will set it to 2+2.

Java will do the calculation for us because I have used the + operator. The + operator will act
on two int operands and return a result. i.e. it will add 2 and 2 and return the value 4 which
will be stored in the int variable answer.

Java Operators
Java has a few obvious basic operators we can use:

• + to add
• - to subtract
• * to multiply
• / to divide

There are more, but we will cover those later.

Assert the value

The next thing we have to do is assert the value.

assertEquals("2+2=4", 4, answer);

When we write @Test methods we have to make sure that we assert something because we
want to make sure that our code reports failures to us automatically.

An assert is a special type of check:

Chapter Three - Writing Your First Java Code 34

• If the check fails then the assert throws an assertion error and our method will fail.
• If the check passes then the assert doesn’t have any side-effects

The asserts we will initially use in our code come from the JUnit Assert package.

So when I type the assert, IntelliJ will show the statement as being in error, because I haven’t
imported the assertEquals method or Assert class from JUnit.

To fix the error I will alt + return on the assertEquals statement and choose to:

static import method...

from

Assert.assertEquals in the org.junit package

IntelliJ will then add the correct import statement into my code.

import static org.junit.Assert.assertEquals;

The assertEquals method is polymorphic. Which simply means that it can be used with
different types of parameters.

I have chosen to use a form of:

assertEquals("2+2=4", 4, answer);

Where:

• assertEquals is an assert that checks if two values are equal
• "2+2=4" is a message that is displayed if the assert fails.
• 4 is an int literal that represents the expected value, i.e. I expect 2+2 to equal 4
• answer is the int variable which has the actual value I want to check against the
expected value

I could have written the assert as:

Chapter Three - Writing Your First Java Code 35

assertEquals(4, answer);

In this form, I have not added a message, so if the assert fails there are fewer clues telling me
what should happen, and in some cases I might even have to add a comment in the code to
explain what the assert does.

I try to remember to add a message when I use the JUnit assert methods because it makes
the code easier to read and helps me when asserts do fail.

Note that in both forms, the expected result is the parameter, before the actual result.

If you get these the wrong way round then JUnit won’t throw an error, since it doesn’t know
what you intended, but the output from a failed assert wouldmislead you. e.g. if I accidentally
wrote 2+3 when initializing the int answer, and I put the expected and actual result the
wrong way round, then the output would say something like:

java.lang.AssertionError: 2+2=4 expected:<5> but was:<4>

And that would confuse me, because I would expect 2+2 to equal 4.

Assertion Tips
Try to remember to add a message in the assertion to make the output readable.

Make sure that you put the expected and actual parameters in the correct order.

Run the @Testmethod

Now that we have written the method, it is time to run the method and make sure it passes.

To do that either:

Run all the @Test annotated methods in the class

• right click on the class name in the Project Hierarchy and select:
– Run 'MyFirstTest'

• click on the class in the Project Hierarchy and press the key combination:
– ctrl + shift + F10

• right click on the class name in the code editor and select:
– Run 'MyFirstTest'

Chapter Three - Writing Your First Java Code 36

Run a single @Test annotated method in the class

• right click on the method name in the code editor and select:
– Run 'canAddTwoPlusTwo()'

• click on the method name in the code editor and press the key combination:
– ctrl + shift + F10

Since we only have one @Test annotated method at the moment they will both achieve the
same result, but when you have more than one @Test annotated method in the class then the
ability to run individual methods, rather than all the methods in the class can come in very
handy.

Run all the @Test annotated methods from the command line

If you know how to use the command line on your computer, and change directory then you
can also run the @Test annotated methods from the command line using the command:

• mvn test

To do this:

• open a command prompt,
• ensure that you are in the same folder as the root of your project. i.e the same folder
as your pom.xml file

• run the command mvn test

You should see the annotated methods run and the Maven output to the command line.

Summary

That was a fairly involved explanation of a very simple JUnit test class:

Chapter Three - Writing Your First Java Code 37

1 package com.javafortesters.chap003myfirsttest.examples;

2 import org.junit.Test;

3 import static org.junit.Assert.assertEquals;

4

5 public class MyFirstTest {

6

7 @Test

8 public void canAddTwoPlusTwo(){

9 int answer = 2+2;

10 assertEquals("2+2=4", 4, answer);

11 }

12 }

Hopefully when you read the code now, it all makes sense, and you can feel confident that
you can start creating your own simple self contained tests.

This book differs from normal presentations of Java, because they would start with creating
simple applications which you run from the command line.

When we write automation code, we spend a lot of time working in the IDE and running the
@Test annotated methods from the IDE, so we code and run Java slightly differently than if
you were writing an application.

This also means that you will learn Java concepts in a slightly different order than other
books, but everything you learn will be instantly usable, rather than learning things that you
are not likely to use very often in the real world.

Although there is not a lot of code, we have covered the basics of a lot of important Java
concepts.

• Ordering classes into packages
• Importing classes from packages to use them
• Creating and naming classes
• Creating methods
• Creating a JUnit Test
• Adding an assertion to a JUnit test
• Running @Test annotated methods from the IDE
• primitive types
• basic arithmetic operators
• an introduction to Java variables

Chapter Three - Writing Your First Java Code 38

• Java comments
• Java statements
• Java blocks

You also encountered the following IntelliJ shortcut keys:

Function Windows Mac

Create New alt + insert ctrl + n

Intention Actions alt + enter alt + enter

Intention Actions alt + return alt + return

Run JUnit Test ctrl + shift + F10 ctrl + shift + F10

And now that you know the basics, we can proceed faster through the next sections.

Exercise: Check for 5 instead of 4
Amend the code so that the assertion makes a check for 5 as the expected value
instead of 4:

• Run the method and see what happens.
• This will get you used to seeing the result of a failing method.

Exercise: Create additional @Test annotated
methods to check:

• 2-2 = 0
• 4/2 = 2
• 2*2 = 4

Chapter Three - Writing Your First Java Code 39

Exercise: Check the naming of the JUnit test
classes:
When you run JUnit test classes from the IDE they do not require ‘Test’ at the
start or end of the name. But they do need that convention to run from Maven.
Verify this.

Create a class with a method containing a failing assert e.g. assertTrue(false);

Rename the class to the different rules below, and run it from mvn test and
from the IDE so you see the naming makes a difference.

• Test at the start e.g. TestNameClass runs in the IDE and from mvn test

• Test at the end e.g. NameClassTest runs in the IDE and from mvn test

• Test in the middle e.g. NameTestClass runs in the IDE but not from mvn

test

• without Test e.g. NameClass runs in the IDE but not from mvn test

References and Recommended Reading

• CamelCase explanation on WikiPedia
– en.wikipedia.org/wiki/CamelCase³²

• Official Oracle Java Documentation
– What is an Object?

* docs.oracle.com/javase/tutorial/java/concepts/object.html³³
– What is a Class?

* docs.oracle.com/javase/tutorial/java/concepts/class.html³⁴
– Java Tutorial on Package Naming conventions

* docs.oracle.com/javase/tutorial/java/package/namingpkgs.html³⁵
– Java code blocks

* docs.oracle.com/javase/tutorial/java/nutsandbolts/expressions.html³⁶
– Java Operators

³²http://en.wikipedia.org/wiki/CamelCase
³³http://docs.oracle.com/javase/tutorial/java/concepts/object.html
³⁴http://docs.oracle.com/javase/tutorial/java/concepts/class.html
³⁵http://docs.oracle.com/javase/tutorial/java/package/namingpkgs.html
³⁶http://docs.oracle.com/javase/tutorial/java/nutsandbolts/expressions.html

http://en.wikipedia.org/wiki/CamelCase
http://docs.oracle.com/javase/tutorial/java/concepts/object.html
http://docs.oracle.com/javase/tutorial/java/concepts/class.html
http://docs.oracle.com/javase/tutorial/java/package/namingpkgs.html
http://docs.oracle.com/javase/tutorial/java/nutsandbolts/expressions.html
http://en.wikipedia.org/wiki/CamelCase
http://docs.oracle.com/javase/tutorial/java/concepts/object.html
http://docs.oracle.com/javase/tutorial/java/concepts/class.html
http://docs.oracle.com/javase/tutorial/java/package/namingpkgs.html
http://docs.oracle.com/javase/tutorial/java/nutsandbolts/expressions.html

Chapter Three - Writing Your First Java Code 40

* docs.oracle.com/javase/tutorial/java/nutsandbolts/operators.html³⁷
• JUnit

– Home Page
* junit.org³⁸

– Documentation
* github.com/junit-team/junit/wiki³⁹

– API Documentation
* junit.org/javadoc/latest⁴⁰

– @Test
* junit.org/javadoc/latest/org/junit/Test.html⁴¹

• IntelliJ
– IntelliJ Editor Auto Import Settings

* jetbrains.com/idea/help/auto-import.html⁴²
– IntelliJ Maven Importing Settings

* jetbrains.com/idea/help/maven-importing.html⁴³

³⁷http://docs.oracle.com/javase/tutorial/java/nutsandbolts/operators.html
³⁸http://junit.org
³⁹https://github.com/junit-team/junit/wiki
⁴⁰http://junit.org/javadoc/latest
⁴¹http://junit.org/javadoc/latest/org/junit/Test.html
⁴²https://www.jetbrains.com/idea/help/auto-import.html
⁴³https://www.jetbrains.com/idea/help/maven-importing.html

http://docs.oracle.com/javase/tutorial/java/nutsandbolts/operators.html
http://junit.org
https://github.com/junit-team/junit/wiki
http://junit.org/javadoc/latest
http://junit.org/javadoc/latest/org/junit/Test.html
https://www.jetbrains.com/idea/help/auto-import.html
https://www.jetbrains.com/idea/help/maven-importing.html
http://docs.oracle.com/javase/tutorial/java/nutsandbolts/operators.html
http://junit.org
https://github.com/junit-team/junit/wiki
http://junit.org/javadoc/latest
http://junit.org/javadoc/latest/org/junit/Test.html
https://www.jetbrains.com/idea/help/auto-import.html
https://www.jetbrains.com/idea/help/maven-importing.html

Chapter Four - Work with Other
Classes

..

Chapter Summary
In this chapter you will learn:

• How to use static methods of another class
• How to instantiate a class to an object variable
• How to access static fields and constants on a class
• The difference between Integer value and instantiation

In this chapter you are going to learn how to use other classes in your @Test method code.
Eventually these will be classes that you write, but for the moment we will use other classes
that are built in to Java.

You have already done this in the previous chapter. Because you used the JUnit Assert class
to check conditions, but we imported it statically, so you might not have noticed. (I’ll explain
what static import means in the next chapter).

But first, some guidance on how to learn Java.

Use @Testmethods to understand Java

When I work with people learning Java, I encourage them to write methods and assertions
which help them understand the Java libraries they are using. And that is what we will do
in this chapter.

For example, you have already seen a primitive type called an int.

Java also provides a class called Integer.

Because Integer is a class, it has methods that we can call, and we can instantiate an object
variable as an Integer.

Chapter Four - Work with Other Classes 42

When I create an int variable, all I can do with it, is store a number in the variable, and
retrieve the number.

If I create an Integer variable, I gain access to a lot of methods on the integer e.g.

• compareTo - compare it to another integer
• intValue - return an int primitive
• longValue - return a long primitive
• shortValue - return a short primitive

Explore the Integer class with @Testmethods

In fact you can see for yourself the methods available to an integer.

• Create a new package:
– com.javafortesters.chap004testswithotherclasses.examples

• Create a new class IntegerExamplesTest
• Create a method integerExploration

• Annotate the method with @Test so you can run it with JUnit

You should end up with something like the following:

package com.javafortesters.chap004testswithotherclasses.examples;

import org.junit.Test;

public class IntegerExamplesTest {

@Test

public void integerExploration(){

}

}

We can use the integerExploration method to experiment with the Integer class.

Instantiate an Integer Class

The first thing we need to do is create a variable of type Integer.

Chapter Four - Work with Other Classes 43

Integer four = new Integer(4);

Because Integer is a class, this is called instantiating a class and the variable is an object
variable.

• int was a primitive type.
• Integer is a class.
• To use a class we instantiate it with the new keyword
• The new keyword creates a new instance of a class
• The new instance is referred to as an object or an instance of a class

You can also see that I passed in the literal 4 as a parameter. I did this because the Integer
class has a constructor method which takes an int as a parameter so the object has a value
of 4.

What is a Constructor?
A constructor is a method on a class which is called when a new instance of the
class is created.

A constructor can take parameters, but never returns a value and is declared
without a return type. e.g. public Integer(int value){...}

A constructor has the same name as the class including startingwith an uppercase
letter.

The Integer class actually has more than one constructor. You can see this for yourself.

• Type in the statement to instantiate a new Integer object with the value 4
• Click inside the parentheses where the 4 is, as if you were about to type a new
parameter,

• press the keys ctrl + p (cmd + p on a Mac)

You should see a pop-up showing you all the forms the constructor can take. In the case of
an Integer it can accept an int or a String.

Chapter Four - Work with Other Classes 44

Check that intValue returns the correct int

We know that the Integer class has a method intValue which returns an int, so we can
create an assertion to check the returned value.

After the statement which instantiates the Integer.

Add a new statement which asserts that intValue returns an int with the value 4.

assertEquals("intValue returns int 4",

4, four.intValue());

When you run this method it should pass.

Instantiate an Integer with a String

We saw that one of the constructors for Integer can take a String, so lets write some code
to experiment with that.

• Instantiate a new Integer variable, calling the Integer constructor with the String

"5",
• Assert that intValue returns the Integer 5

Integer five = new Integer("5");

assertEquals("intValue returns int 5",

5, five.intValue());

Quick Summary

Chapter Four - Work with Other Classes 45

package com.javafortesters.chap004testswithotherclasses.examples;

import org.junit.Test;

import static org.junit.Assert.assertEquals;

public class IntegerExamplesTest {

@Test

public void integerExploration(){

Integer four = new Integer(4);

assertEquals("intValue returns int 4",

4, four.intValue());

Integer five = new Integer("5");

assertEquals("intValue returns int 5",

5, five.intValue());

Integer six = 6;

assertEquals("autoboxing assignment for 6",

6, six.intValue());

}

}

It might not seem like it but we just covered some important things there.

• Did you notice that you didn’t have to import the Integer class?
– Because the Integer class is built in to the language, we can just use it. There are
a few classes like that, String is another one. The classes do exist in a package
structure, they are in java.lang, but you don’t have to import them to use them.

• We just learned that to use an object of a class, that someone else has provided, or that
we write, we have to instantiate the object variables using the new keyword.

• Use ctrl + p to have the IDE show you what parameters a method can take (cmd + p

on a Mac).
• When we instantiate a class with the new keyword, a constructor method on the class
is called automatically.

AutoBoxing

In the versions of Java that we will be using, we don’t actually need to instantiate the Integer
class with the new keyword.

Chapter Four - Work with Other Classes 46

We can take advantage of a Java feature called ‘autoboxing’ which was introduced in Java
version 1.5. Autoboxing will automatically convert from a primitive type to the associated
class automatically.

So we can instead simply assign an int to an Integer and autoboxing will take care of the
conversion for us e.g.

Integer six = 6;

assertEquals("autoboxing assignment for 6",

6, six.intValue());

Static methods on the Integer class

Another feature that classes provide are static methods.

You already used static methods on the Assert class from JUnit. i.e. assertEquals

A static method operates at the class level, rather than the instance or object level. Which
means that we don’t have to instantiate the class into a variable in order to call a static

method.

e.g. Integer provides static methods like:

• Integer.valueOf(String s) - returns an Integer initialized with the value of the
String

• Integer.parseInt(String s) - returns an int initialized with the value of the String

You can see all the staticmethods by looking at the documentation for Integer, or in your
code write Integer. then immediately after typing the . the IDE should show you the code
completion for all the static methods.

For each of these methods, if you press ctrl + q (ctrl + j on a Mac) you should see the
help file information for that method.

Chapter Four - Work with Other Classes 47

Exercise: Convert an int to Hex:
Integer has a static method called toHexStringwhich takes an int as parameter,
this returns the int as a String formatted in hex.

Write an @Test annotated method which uses toHexString and asserts:

• that 11 becomes b
• that 10 becomes a
• that 3 becomes 3
• that 21 becomes 15

Public Constants on the Integer class

It is possible to create variables at a class level (these are called fields) which are also static.
These field variables are available without instantiating the class. The Integer class exposes
a few of these but the most important ones are MIN_VALUE and MAX_VALUE.

In addition to being static fields, these are also constants, in that you can’t change them.
(We’ll cover how to do this in a later chapter). The naming convention for constants is to use
only uppercase, with _ as the word delimiter.

MIN_VALUE and MAX_VALUE contain the minimum and maximum values that an int can
support. It is worth using these values instead of -2147483648 and 2147483647 to ensure
future compatibility and cross platform compatibility.

To access a constant, you don’t need to add parenthesis because you are accessing a variable,
and not calling a method.

i.e. you write “Integer.MAX_VALUE” and not “Integer.MAX_VALUE()”.

Exercise: Confirm MAX and MIN Integer
sizes:
In the previous chapter we said that an int ranged from -2147483648, to
2147483647. Integer has static constants MIN_VALUE and MAX_VALUE.

Write an @Test annotated method to assert that:

• Integer.MIN_VALUE equals -2147483648
• Integer.MAX_VALUE equals 2147483647

Chapter Four - Work with Other Classes 48

Do this regularly

I encourage you to do the following regularly.

When you encounter:

• any Java library that you don’t know how to use
• parts of Java that you are unsure of
• code on your team that you didn’t write and don’t understand

Then you can:

• read the documentation - ctrl + q (ctrl + j on Mac) or on-line web docs
• read the source - ctrl and click on the method, to see the source
• write some @Test annotated methods, with assertions, to help you explore the
functionality of the library

When writing the @Test methods you need to keep the following in mind:

• write just enough code to trigger the functionality
• ensure you write assertion statements that cover the functionality well and are
readable

• experiment with ‘odd’ circumstances

This will help you when you come to write assertions against your own code as well.

Warnings about Integer

I used Integer in this chapter because we used the int primitive in an earlier chapter and
Integer is the related follow on class.

But… experienced developers will now be worried that you will start using Integer in your
code, and worse, instantiating new integers in your code e.g. new Integer(0)

They worry because while an int equals an int, an Integer does not always equal an
Integer.

I’m less worried because:

Chapter Four - Work with Other Classes 49

• I trust you,
• Automation code has slightly different usages than production code and you’ll more
than likely use the Integer static methods

• I’m using this as an example of instantiating a class and using static methods,
• This is only “Chapter 4” and we still have a way to go

I’ll illustrate with a code example, why the experienced developers are concerned. You might
not understand the next few paragraphs yet, but I just want to give you a little detail as to
why one Integer, or one Object, does not always equal another Object.

e.g. if the following assertions were in an @Test method then they would pass:

assertEquals(4,4);

assertTrue(4==4);

Note that “==” is the Java operator for checking if one thing equals another.

If the following code was in an @Test method, then the second assertion would fail:

Integer firstFour = new Integer(4);

Integer secondFour = new Integer(4);

assertEquals(firstFour, secondFour);

assertTrue(firstFour==secondFour);

Specifically, the following assertion would fail:

assertTrue(firstFour==secondFour);

Why is this?

Well, primitives are simple and there is no difference between value and identity for
primitives. Every 4 in the code refers to the same 4.

Objects are different, we instantiate them, so the two Integer variables (firstFour and
secondFour) both refer to different objects. Even though they have the same ‘value’, they are
different objects.

When I do an assertEquals, JUnit uses the equals method on the object to compare the
‘value’ or the object (i.e. 4 in this case). But when I use the "==" operator, Java is checking
if the two object variables refer to the same instantiation, and they don’t, they refer to two
independently instantiated objects.

So the assertEquals is actually equivalent to:

Chapter Four - Work with Other Classes 50

assertTrue(firstFour.equals(secondFour));

Don’t worry if you don’t understand this yet. It will make sense later.

For now, just recognize that:

• you can create object instances of a class with the new keyword, and use the non-static
methods on the class e.g. anInteger.intValue()

• you can access the static methods on the class without instantiating the class as an
object e.g. Integer.equals(..).

Summary

You learned that in IntelliJ you can press ctrl and then the left mouse button to click on a
method name and IntelliJ will jump to the source of that method.

You learned the following shortcut keys:

Function Windows Mac

Show Parameters ctrl + p cmd + p

Show JavaDoc ctrl + q ctrl + j

You also learned about static methods and the difference between object value and object
identity.

Whatever you learn in this book, make sure you continue to experiment with writing
assertions around code that you use or want to understand.

You also learned how to instantiate a new object and what a constructor does.

References and Recommended Reading

• Creating Objects
– docs.oracle.com/javase/tutorial/java/javaOO/objectcreation.html⁴⁴

• Autoboxing
– docs.oracle.com/javase/tutorial/java/data/autoboxing.html⁴⁵

⁴⁴http://docs.oracle.com/javase/tutorial/java/javaOO/objectcreation.html
⁴⁵http://docs.oracle.com/javase/tutorial/java/data/autoboxing.html

http://docs.oracle.com/javase/tutorial/java/javaOO/objectcreation.html
http://docs.oracle.com/javase/tutorial/java/data/autoboxing.html
http://docs.oracle.com/javase/tutorial/java/javaOO/objectcreation.html
http://docs.oracle.com/javase/tutorial/java/data/autoboxing.html

Chapter Four - Work with Other Classes 51

• Integer
– docs.oracle.com/javase/7/docs/api/java/lang/Integer.html⁴⁶

⁴⁶http://docs.oracle.com/javase/7/docs/api/java/lang/Integer.html

http://docs.oracle.com/javase/7/docs/api/java/lang/Integer.html
http://docs.oracle.com/javase/7/docs/api/java/lang/Integer.html

Chapter Twenty Three - Next Steps

..

Chapter Summary
This chapter will provide you with a recommended set of next steps:

• Recommended Reading List
• Recommended Videos
• Recommended Web Sites
• Recommended Next Steps

I hope that if you made it this far into the book, that you attempted the exercises. If you did,
and you followed the suggestions peppered throughout the book, then you now have a grasp
of the fundamentals of writing Java code. This chapter suggests books and websites to visit
to help you continue to learn.

Certainly you’ve seen a lot of code snippets. Most of the code you have seen has been written
in the form of @Test annotated methods with assertions. Pretty much what you will be
expected to write in the real world.

Recommended Reading

I don’t recommend a lot of Java books because they are a very personal thing. There are
books that people rave about that I couldn’t get my head around. And there are those that I
love that other people hate.

But since I haven’t provided massive coverage of the Java language. I’ve pretty much given
you “just enough” to get going and understand the code you read. I’m going to list the Java
books that I gained most from, and still refer to:

• “Effective Java”
– by Joshua Bloch

• “Implementation Patterns”

Chapter Twenty Three - Next Steps 53

– by Kent Beck
• “Growing Object-Oriented Software, Guided by Tests”

– by Steve Freeman and Nat Pryce
• “Core Java: Volume 1 - Fundamentals”

– by Cay S. Horstmann and Garry Cornell
• “Covert Java : Techniques for Decompiling, Patching and Reverse Engineering”

– by Alex Kalinovsky
• “Java Concurrency in Practice”

– by Brian Goetz
• “Mastering Regular Expressions”

– by Jeffrey Friedl

Now, to justify my selections…

Effective Java

“Effective Java” by Joshua Bloch, at the time of writing in its 2nd Edition. This book works
for beginners and advanced programmers.

Java developers build up a lot of knowledge about their language from other developers.
“Effective Java” helps short cut that process.

It has 78 chapters. Each, fairly short, but dense in their coverage and presentation.

When I first read it, I found it heavy going, because I didn’t have enough experience or
knowledge to understand it all. But I re-read it, and have continued to re-read it over the
time I have developed my Java experience. And each time I read it, I find a new nuance, or
a deeper understanding of the concepts.

Because each chapter is short, I return to this book to refresh my memory of certain topics.

This was also the book that helped me understand enum well enough to use them and helped
me understand concurrency well enough to then read, and understand, “Java Concurrency
in Practice”.

I recommend that you buy and read this book early in your learning. Even if you don’t
understand it all, read it all. Then come back to it again and again. It concentrates on
very practical aspects of the Java language and can boost your real-world effectiveness
tremendously.

You can find a very good overview of the book, in the form of a recording of a Joshua Bloch
talk at “Google I/O 2008 - Effective Java Reloaded” on YouTube:

Chapter Twenty Three - Next Steps 54

• youtu.be/pi_I7oD_uGI⁴⁷

Implementation Patterns

Another book that benefits from repeated reading. You will take different information from
it with each reading, depending on your experience level at the time.

“Implementation Patterns” by Kent Beck explains some of the thought processes involved in
writing professional code.

This book was one of the books that helped me:

• concentrate on keeping my code simple,
• decide to learn the basics of Java (and know how to find information when I needed
it),

• try to use in built features of the language, before bringing in a new library to my code.

The book is thin and, again dense. Most complaints I see on-line seem to stem from the
length of the book and the terseness of the coverage. I found that beneficial, it meant very
little padding and waste. I have learned, or re-learned, something from this book every time
I read it.

Other books that cover similar topics include “Clean Code” by Robert C. Martin, and “The
Pragmatic Programmer” by Andrew Hunt and David Thomas. But I found “Implementation
Patterns” far more useful and applicable to my work.

For more information on Kent Beck’s writing and work, visit his web site:

• threeriversinstitute.org⁴⁸

Growing Object-Oriented Software

Another book I benefited from reading when I wasn’t ready for it. I was able to re-read it
and learn more. I still gain value from re-reading it.

• “Growing Object-Oriented Software, Guided by Tests”, by Steve Freeman and Nat
Pryce

⁴⁷http://youtu.be/pi_I7oD_uGI
⁴⁸http://www.threeriversinstitute.org

http://youtu.be/pi_I7oD_uGI
http://www.threeriversinstitute.org
http://youtu.be/pi_I7oD_uGI
http://www.threeriversinstitute.org

Chapter Twenty Three - Next Steps 55

Heavily focused on using @Test method code to write and understand your code. It also
covers mock objects very well.

This book helped change my coding style, and how I approach the building of abstraction
layers.

The official homepage for the book is growing-object-oriented-software.com⁴⁹

Covert Java

“Covert Java : Techniques for Decompiling, Patching and Reverse Engineering”, by Alex
Kalinovsky starts to show its age now as it was written in 2004. But highlights some of the
ways of working with Java libraries that you really wouldn’t use if you were a programmer.

But sometimes as a tester we have to work with pre-compiled libraries, without source code,
and use parts of the code base out of context.

I found this a very useful book for learning about reflection and other practices related to
taking apart Java applications.

You can usually pick this up quite cheaply second hand. There are other books that cover
decompiling, reverse engineering and reflection. But this one got me started, and I still find
it clear and simple.

Java Concurrency in Practice

Concurrency is not something I recommend trying to work with when you are starting out
with Java.

But at some point you will probably want to run your code in parallel, or create some threads
to make your code perform faster. And you will probably fail, and not really understand why.

I used “Effective Java” to help me get started. But “Java Concurrency in Practice” by Brian
Goetz, was the book I read when I really had to make my automation abstraction layer work
with concurrent code.

Core Java: Volume 1

The Core Java books are massive, over 1000 pages. And if you really want to understand Java
in depth then these are the books to read.

⁴⁹http://www.growing-object-oriented-software.com

http://www.growing-object-oriented-software.com
http://www.growing-object-oriented-software.com

Chapter Twenty Three - Next Steps 56

I find them to be hard work and don’t read them often. I tend to use the JavaDoc for the Java
libraries and methods themselves.

But, periodically, I want to have an overview of the language and understand the scope of
the built in libraries, because there are lots of in-built features that I don’t use, that I would
otherwise turn to an external library for.

Every time I’ve flicked through “Core Java”, I have discovered a nuance and a new set of
features, but I don’t do it often.

Mastering Regular Expressions

We didn’t cover the full power of Regular Expressions in this book.

I tend to try and keep my code simple and readable so I’ll use simple string manipulation to
start with.

But over time, I often find that I can replace a series of if blocks and string transformations
with a regular expression.

Since I don’t use regular expressions often I find that each time, I have to re-learn them and
I still turn to “Mastering Regular Expressions” by Jeffrey E.F. Friedl.

As an alternative to consider: “Regular Expressions Cookbook” by Jan Goyvaerts, which is
also very good.

I sometimes use the tool RegexMagic regexmagic.com⁵⁰, written by Jan Goyvaerts when
writing regular expressions, it lets me test out the regular expression across a range of
example data, and generate sample code for a lot of different languages.

Jan also maintains the web site regular-expressions.info⁵¹ with a lot of tutorial information
on it.

Recommended Videos

The videos produced by John Purcell at caveofprogramming.com⁵² have been recommended
to me by many testers.

I’ve looked through some of them, and John provides example coding for many of the items
covered in this book, and in the “Advancing Concepts” section.

⁵⁰http://www.regexmagic.com
⁵¹http://www.regular-expressions.info
⁵²http://www.caveofprogramming.com

http://www.regexmagic.com
http://www.regular-expressions.info
http://www.caveofprogramming.com
http://www.regexmagic.com
http://www.regular-expressions.info
http://www.caveofprogramming.com

Chapter Twenty Three - Next Steps 57

John’s approach is geared around writing programs, and I think that if you have now
finished this book, you will benefit from the traditional programmer based coverage that
John provides.

Recommended Web Sites

For general Java news, and up to date conference videos, I recommend the following web
sites.

• theserverside.com⁵³
• infoq.com/java⁵⁴

Make sure you subscribe to the RSS feeds for the above sites.

I will remind you that I have a web site javaForTesters.com⁵⁵ and I plan to add more
information there, and links to other resources over time. I will also add additional exercises
and examples to that site rather than continue to expand this book.

Remember, all the code used in this book, and the answers to the exercises is available to
download from github.com/eviltester⁵⁶.

Next Steps

This has been a beginner’s book.

You can see from the “Advancing Concepts” chapter that there are a lot of features in Java
that I didn’t cover. Many of them I don’t use a lot and I didn’t want to pad out the book with
extensive coverage that you can find in other books or videos.

I wanted this book to walk you through the Java language in an order that I think makes
sense to people who are writing code, but not necessarily writing systems.

Your next step? Keep learning.

I recommend you start with the books and videos recommended here, but also ask your team
mates.

⁵³http://www.theserverside.com
⁵⁴http://www.infoq.com/java
⁵⁵http://javafortesters.com
⁵⁶https://github.com/eviltester/javaForTestersCode

http://www.theserverside.com
http://www.infoq.com/java
http://javafortesters.com
https://github.com/eviltester/javaForTestersCode
http://www.theserverside.com
http://www.infoq.com/java
http://javafortesters.com
https://github.com/eviltester/javaForTestersCode

Chapter Twenty Three - Next Steps 58

You will be working on projects, and the type of libraries you are using, and the technical
domain that you are working on, may require different approaches than those mentioned in
this book.

I hope you have learned that you can get a lot done quite easily, and you should now
understand the fundamental classes and language constructs that you need to get started.

Now:

• start writing @Test methods which exercise your production code
• investigate how much of your repeated manual effort can be automated

Thank you for your time spent with this book.

I wish you well for the future. This is just the start of your work with Java. I hope you’ll
continue to learn more and put it to use on your projects.

My ability to use automation to support my testing and add value on projects continues to
increase, the more I learn how to improve my coding skills. I hope yours does too.

References

• Java For Testers
– github.com/eviltester/javaForTestersCode⁵⁷
– JavaForTesters.com⁵⁸

• Joshua Bloch
– en.wikipedia.org/wiki/Joshua_Bloch⁵⁹
– youtu.be/pi_I7oD_uGI⁶⁰

• Kent Beck
– twitter.com/kentbeck⁶¹
– “Three Rivers Institute” threeriversinstitute.org⁶²

• Growing Object Oriented Software, Guided by Tests
– growing-object-oriented-software.com⁶³

⁵⁷https://github.com/eviltester/javaForTestersCode
⁵⁸http://www.javafortesters.com
⁵⁹http://en.wikipedia.org/wiki/Joshua_Bloch
⁶⁰http://youtu.be/pi_I7oD_uGI
⁶¹https://twitter.com/kentbeck
⁶²http://www.threeriversinstitute.org
⁶³http://www.growing-object-oriented-software.com

https://github.com/eviltester/javaForTestersCode
http://www.javafortesters.com
http://en.wikipedia.org/wiki/Joshua_Bloch
http://youtu.be/pi_I7oD_uGI
https://twitter.com/kentbeck
http://www.threeriversinstitute.org
http://www.growing-object-oriented-software.com
https://github.com/eviltester/javaForTestersCode
http://www.javafortesters.com
http://en.wikipedia.org/wiki/Joshua_Bloch
http://youtu.be/pi_I7oD_uGI
https://twitter.com/kentbeck
http://www.threeriversinstitute.org
http://www.growing-object-oriented-software.com

Chapter Twenty Three - Next Steps 59

– Steve Freeman’s Blog higherorderlogic.com⁶⁴
– natpryce.com⁶⁵

• Core Java Book
– horstmann.com/corejava.html⁶⁶

• Java Concurrency In Practice
– jcip.net.s3-website-us-east-1.amazonaws.com/⁶⁷

• Regular Expressions
– Mastering Regular Expressions home page regex.info⁶⁸
– regular-expressions.info/⁶⁹
– regexmagic.com⁷⁰
– regexpal.com⁷¹
– www.regexr.com⁷²

⁶⁴http://www.higherorderlogic.com
⁶⁵http://www.natpryce.com
⁶⁶http://www.horstmann.com/corejava.html
⁶⁷http://jcip.net.s3-website-us-east-1.amazonaws.com
⁶⁸http://regex.info
⁶⁹http://www.regular-expressions.info
⁷⁰http://www.regexmagic.com
⁷¹http://regexpal.com
⁷²http://www.regexr.com

http://www.higherorderlogic.com
http://www.natpryce.com
http://www.horstmann.com/corejava.html
http://jcip.net.s3-website-us-east-1.amazonaws.com
http://regex.info
http://www.regular-expressions.info
http://www.regexmagic.com
http://regexpal.com
http://www.regexr.com
http://www.higherorderlogic.com
http://www.natpryce.com
http://www.horstmann.com/corejava.html
http://jcip.net.s3-website-us-east-1.amazonaws.com
http://regex.info
http://www.regular-expressions.info
http://www.regexmagic.com
http://regexpal.com
http://www.regexr.com

Appendix - IntelliJ Hints and Tips
Throughout the book I mentioned hints and tips, and shortcuts for using IntelliJ.

I collate all of those in this appendix for easy reference, and add some additional information
on using IntelliJ with this book.

Shortcut Keys

This table contains the shortcut keys that I use most often.

Function Windows Mac

Create New alt + insert ctrl + n

Intention Actions alt + enter alt + enter

Intention Actions alt + return alt + return

Run JUnit Test ctrl + shift + F10 ctrl + shift + F10

Show Parameters ctrl + p cmd + p

Show JavaDoc ctrl + q ctrl + j

Code Completion ctrl + space ctrl + space

Find by class ctrl + n ctrl + n

Find by filename ctrl + shift + n ctrl + shift + n

Find by symbol ctrl + shift + alt + n ctrl + shift + alt + n

JetBrains IntelliJ have supporting documentation on their website:

• Reference pdf for Windows and Linux
– jetbrains.com/idea/docs/IntelliJIDEA_ReferenceCard.pdf⁷³

• Reference pdf for Mac OS X
– jetbrains.com/idea/docs/IntelliJIDEA_ReferenceCard_Mac.pdf⁷⁴

And the help files have “Keyboard shortcuts you cannot miss”

• jetbrains.com/idea/help/keyboard-shortcuts-you-cannot-miss.html⁷⁵

⁷³https://www.jetbrains.com/idea/docs/IntelliJIDEA_ReferenceCard.pdf
⁷⁴https://www.jetbrains.com/idea/docs/IntelliJIDEA_ReferenceCard_Mac.pdf
⁷⁵https://www.jetbrains.com/idea/help/keyboard-shortcuts-you-cannot-miss.html

https://www.jetbrains.com/idea/docs/IntelliJIDEA_ReferenceCard.pdf
https://www.jetbrains.com/idea/docs/IntelliJIDEA_ReferenceCard_Mac.pdf
https://www.jetbrains.com/idea/help/keyboard-shortcuts-you-cannot-miss.html
https://www.jetbrains.com/idea/docs/IntelliJIDEA_ReferenceCard.pdf
https://www.jetbrains.com/idea/docs/IntelliJIDEA_ReferenceCard_Mac.pdf
https://www.jetbrains.com/idea/help/keyboard-shortcuts-you-cannot-miss.html

Appendix - IntelliJ Hints and Tips 61

Code Completion

Code completion is your friend. You can use it to explore APIs and Libraries.

All you do is start typing and after the . you will see context specific items you can use.

You can force a start of code completion if you close the pop-up menu by pressing:

• ctrl + space

Navigating Source Code

ctrl + click

For any method in your code, either a built in method, or a library method, or even one that
you have written. You can hold down ctrl and left mouse click on the method name to jump
to the source of that method.

You might be prompted to allow IntelliJ to download the source for external libraries.

This can help when working with the example source code for this book as you can navigate
to the domain objects from within the @Test method code.

Finding Classes and Symbols

If in this book you see a method name or a class name, but don’t know where to find it in
the source code then you can use the find functionality in IntelliJ to help.

To find a class by name, use the keyboard shortcut:

• ctrl + n

This can perform partial matching, so you don’t have to type in the full name of the class.

If you want to find a ‘file’ in the project then use keyboard shortcut:

• ctrl + shift + n

If youwant to find amethod name, or variable name (symbol) then use the keyboard shortcut:

• ctrl + shift + alt + n

Appendix - IntelliJ Hints and Tips 62

Running a JUnit Test

Annotating methods with @Testmakes it easy for us to ‘run’ the methods we write. You can
right click on the method name or class and choose to Run as JUnit test. Or use shortcut key:

• ctrl + shift + F10

Loading Project Source

The easiest way to load a project into IntelliJ, and this applies to the book example source
code, is to use:

• File \ Open and select the pom.xml file.

Help Menu

The help menu does more than offer a link to a help file.

Find Action

The menu option Help \ Find Action allows you to type an action and IntelliJ will provide
menu options and short cut keys to help.

e.g.

• Select Help \ Find Action

• type “junit” and you will see a list of ‘settings’ you can use to help configure JUnit in
IntelliJ

• type “run” and you will see a list of options for running code, or tests

The list isn’t just for information, you can click on the items in the list and you will be taken
to the functionality in IntelliJ or run the command.

Appendix - IntelliJ Hints and Tips 63

Enable Auto Importing

Auto Importing can help faster coding as it will add Import statements automatically, and
download maven dependencies when you amend the pom.xml file.

You will probably see an onscreen prompt to switch this on, but if you miss it then you can
use the settings to enable it.

• Settings and Maven. Importing⁷⁶ to switch on the Maven pom.xml importing
automatically.

• Settings and Editor. Auto Import⁷⁷ to amend the Java import settings.

You can use the Find Action to help you locate these options if a future version of IntelliJ
has moved them.

Use the Terminal in IntelliJ

IntelliJ has a built in terminal. The button for this is shown at the bottom of the GUI.

This is very useful for quickly issuing mvn commands or any of the other terminal commands
mentioned in this book.

Productivity Guide

The Help \ Productivity Guide menu option shows a dialog with common productivity
improvements.

You can click on the items in the list to see what it does, and you can also see which ones
you have used, and which you haven’t.

This can help you learn the basics of IntelliJ very quickly.

Summary

IntelliJ offers a lot of flexibility in how we work with code. Over time you will learn to make
your work with Java faster as you learn more about the IDE.

Over time I will add videos and information to JavaForTesters.com⁷⁸ to demonstrate more
functionality with IntelliJ that I do not have space to add to this book.

⁷⁶https://www.jetbrains.com/idea/help/maven-importing.html
⁷⁷https://www.jetbrains.com/idea/help/auto-import.html
⁷⁸http://javafortesters.com

https://www.jetbrains.com/idea/help/maven-importing.html
https://www.jetbrains.com/idea/help/auto-import.html
http://javafortesters.com
https://www.jetbrains.com/idea/help/maven-importing.html
https://www.jetbrains.com/idea/help/auto-import.html
http://javafortesters.com

Hope you enjoyed this Sample
Hi,

I hope you enjoyed reading this sample of “Java For Testers” by Alan Richardson.

The full book contains 23 chapters, and an additional long appendix with all the answers to
all the exercises.

You can find the table of contents on-line:

• leanpub.com/javaForTesters#table-of-contents⁷⁹

Because this book was built from source code, all the example source code used in this book
is contained in the free source download.

• github.com/eviltester/javaForTestersCode⁸⁰

You can buy Java For Testers

You can buy the full book as an ebook from leanpub:

• leanpub.com/javaForTesters⁸¹

Other purchasing options will be described on our main web site:

• JavaForTesters.com⁸²

⁷⁹https://leanpub.com/javaForTesters#table-of-contents
⁸⁰https://github.com/eviltester/javaForTestersCode
⁸¹https://leanpub.com/javaForTesters
⁸²http://javafortesters.com

https://leanpub.com/javaForTesters#table-of-contents
https://github.com/eviltester/javaForTestersCode
https://leanpub.com/javaForTesters
http://javafortesters.com
https://leanpub.com/javaForTesters#table-of-contents
https://github.com/eviltester/javaForTestersCode
https://leanpub.com/javaForTesters
http://javafortesters.com

Hope you enjoyed this Sample 65

About The Author

Alan offers a variety of on-line training courses, both free and commercial:

• “Selenium 2 WebDriver With Java”
• “Start Using Selenium WebDriver”
• “Technical Web Testing”

You can find details of his books, training courses, conference papers and slides, and videos,
on his main company web site:

• CompendiumDev.co.uk⁸³

Alan maintains a number of web sites:

• SeleniumSimplified.com⁸⁴ : Web Automation using Selenium WebDriver
• EvilTester.com⁸⁵ : Technical testing
• JavaForTesters.com⁸⁶ : Java, aimed at software testers.

– JavaForTesters.com also acts as the support site for this book.

Alan tweets using the handle @eviltester⁸⁷

Do visit the websites above and take advantage of all the information material that I make
available for free.

Thank you for reading this sample.

⁸³http://compendiumdev.co.uk
⁸⁴http://seleniumsimplified.com
⁸⁵http://eviltester.com
⁸⁶http://javafortesters.com
⁸⁷https://twitter.com/eviltester

http://compendiumdev.co.uk
http://seleniumsimplified.com
http://eviltester.com
http://javafortesters.com
https://twitter.com/eviltester
http://compendiumdev.co.uk
http://seleniumsimplified.com
http://eviltester.com
http://javafortesters.com
https://twitter.com/eviltester

	Table of Contents
	Welcome to this Sample
	Introduction
	Testers use Java differently
	Exclusions
	Windows and Mac supported
	Supporting Source Code
	About the Author
	Acknowledgments

	Chapter One - Basics of Java Revealed
	Java Example Code

	Chapter Two - Install the Necessary Software
	Introduction
	Do you already have JDK or Maven installed?
	Install The Java JDK
	Install Maven
	Install The IDE
	Create a Project using the IDE
	About your new project
	Add JUnit to the pom.xml file
	Summary

	Chapter Three - Writing Your First Java Code
	My First JUnit Test
	Prerequisites
	Create A JUnit Test Class
	Create a Method
	Make the method a JUnit test
	Calculate the sum
	Assert the value
	Run the @Test method
	Summary
	References and Recommended Reading

	Chapter Four - Work with Other Classes
	Use @Test methods to understand Java
	Warnings about Integer
	Summary
	References and Recommended Reading

	Chapter Twenty Three - Next Steps
	Recommended Reading
	Recommended Videos
	Recommended Web Sites
	Next Steps
	References

	Appendix - IntelliJ Hints and Tips
	Shortcut Keys
	Code Completion
	Navigating Source Code
	Running a JUnit Test
	Loading Project Source
	Help Menu
	Summary

	Hope you enjoyed this Sample
	You can buy Java For Testers
	About The Author

