@JsonCreator
@JsonProperty public Portfolio

String firstName @JSOQValUGI
public String toString()

Jackson Cookbook
JSON Recipes in Java

Ted

Young

ObjectMapper objectMapper = new ObjectMappe:
objectMapper.writeValue (JsonWriter, portfol:

The Jackson Cookbook
JSON Recipes in Java

Ted M. Young

This book is for sale at http://leanpub.com/jacksoncookbook

This version was published on 2013-09-03

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing
process. Lean Publishing is the act of publishing an in-progress ebook using lightweight tools and
many iterations to get reader feedback, pivot until you have the right book and build traction once
you do.

©2012 - 2013 Ted M. Young

http://leanpub.com/jacksoncookbook
http://leanpub.com
http://leanpub.com/manifesto

Tweet This Book!

Please help Ted M. Young by spreading the word about this book on Twitter!
The suggested hashtag for this book is #jacksoncookbook.

Find out what other people are saying about the book by clicking on this link to search for this
hashtag on Twitter:

https://twitter.com/search/#jacksoncookbook

http://twitter.com
https://twitter.com/search/#jacksoncookbook
https://twitter.com/search/#jacksoncookbook

Contents

Release Notes e i
Version 0.3 L L e e i
Version 0.2 oL e e e i
Version 0.1 L o L e e e e e i

Acknowledgments L ii

Introduction iii
Problems Welcome! iii

Configuring JSON Formatting 1
Recipe: Make JSON Output More Readable 1
Recipe: Suppress null valuesglobally 5
Recipe: Ordering properties in JSON output 6
General ObjectMapper tip. o e 7

Mix-Ins L e 9

Value Instantiators 10

Handling Polymorphic Types 11

Appendix: JSON Information 12
JSONDefined e e 12
JSON Schema e e 12

Appendix: JSON Tools 13
JSONLInto 13
JSON Editor Online e 14
JSONZHTML . . . o 15

Appendix: JavaJSON Tools 16

JSON Schema to JavaPOJO e 16

Release Notes

Version 0.3
Published on September 3, 2013.

+ Added new chapter on Mix-Ins.
+ Added content to the Configuring ObjectMapper chapter:
— Renamed this chapter to be “Configuring JSON Formatting”, since it now covers more
than just globally configuring the ObjectMapper instance.
Changed the use of objectMapper.configure() to .enable() for configuring the
SerializationFeature.INDENT_OUTPUT.
Added recipe for ordering properties.
Added ObjectMapper tip.

Version 0.2
Published on September 1, 2012.

« Updated the Configuring ObjectMapper chapter.
« Added chapter on Value Instantiators.

Version 0.1

The initial release of this book. Published on August 28, 2012.

« Has a chapter on Configuring ObjectMapper and two appendices.

Acknowledgments

Thanks to Tatu Saloranta for creating Jackson and being so responsive to questions on the Jackson
forum. You can find information about him at his Cowtown Coder’ blog.

Also, thanks to the LeanPub? folks (Scott, Peter, and Len) for being so responsive to requests and
bug reports.

"http://cowtowncoder.com/author-cowtowncoder.html
*https://leanpub.com

http://cowtowncoder.com/author-cowtowncoder.html
https://leanpub.com
http://cowtowncoder.com/author-cowtowncoder.html
https://leanpub.com

Introduction

Jackson is a popular, high-performance JSON processor for Java. Jackson can support almost any
JSON need that you might have, but that flexibility can make it complex to use. This book takes a
problem and then shows, with lots of code and JSON examples, how to solve that problem using
various Jackson features. Many of these problems were ones I encountered integrating JSON support
with a “legacy” codebase, i.e., a codebase where I couldn’t modify the code, using Data Binding, but
I’ll also cover some of the Streaming API that’s used within custom serializers/deserializers. As a
bonus, the Appendix contains a description of JSON tools that I've found useful along the way.

Problems Welcome!

If you’re using Jackson, and have a pesky problem (or solution!), don’t hesitate to post it in the book
discussion group® and I may include it in the next release of this book.

Jackson Version:

Note that this book covers only the 2.x version of Jackson, not the earlier 1.x releases (2.x is the
future!).

*https://groups.google.com/forum/#!forum/jackson-cookbook-discuss

https://groups.google.com/forum/#!forum/jackson-cookbook-discuss
https://groups.google.com/forum/#!forum/jackson-cookbook-discuss
https://groups.google.com/forum/#!forum/jackson-cookbook-discuss

O O B W N -

Configuring JSON Formatting

This section covers customizing the serialization/deserialization of your object graph at a global
level, i.e., per instance of Ob jectMapper, as well as per-class or per-property using annotations.

Recipe: Make JSON Output More Readable

The Ob jectMapper is the main class used to write out (serialize) an object graph as JSON. By default,
the ObjectMapper (really the underlying ObjectWriter) will not put any extra whitespace in the
generated JSON output. For example:

{"title":"The Jackson Cookbook", "subtitle":"JSON Recipes in Java", "author":
"name": {"first":"Ted", "middle":"M","last":"Young"}, "twitterId":

"@jitterted", "website":"http://about.me/tedmyoung"}, "url":

"https://leanpub.com/jacksoncookbook","language":"English", "version":"0.1"}

Note:

The actual JSON output doesn’t have any newlines, the wrapping shown above is
purely to fit this book’s page margins.

To make the JSON easier to read, you can tell ObjectMapper to use a “pretty printer”, which will
insert spaces and newlines into the output (line 4 tells the mapper to use the default pretty printer
using writerWithDefaultPrettyPrinter()):

Ob jectMapper objectMapper = new ObjectMapper();

Book jacksonCookbook = new JacksonCookbook();

String json = objectMapper
.writerWithDefaultPrettyPrinter()
.writeValueAsString(jacksonCookbook) ;

System.out.println(json);

Configuring JSON Formatting 2

The result will be:
{
"title" : "The Jackson Cookbook",
"subtitle" : "JSON Recipes in Java",
"author" : {
"name" : {
"first" : "Ted",
"middle" : "M",
"last" : "Young"
1,
"twitterId" : "@jitterted",
"website" : "http://about.me/tedmyoung”
3,
"url" : "https://leanpub.com/jacksoncookbook",
"language" : "English",
"version" : "0@.1"
}

Globally use Pretty Printer

If you always want to pretty-print the output, you can configure the Ob jectMapper instance directly
using the SerializationFeature class:

ObjectMapper objectMapper = new ObjectMapper();
objectMapper.enable(SerializationFeature. INDENT_OUTPUT);

The enable method here turns on the INDENT_OUTPUT feature, which tells Jackson to use the
DefaultPrettyPrinter when serializing your objects. The code

objectMapper.configure(SerializationFeature. INDENT _OUTPUT, true)

does the same thing as using enable, but enable is easier to read than trying to interpret what the
boolean true value means.

© 00 N O O b W N =

B R s
O b 0N =~ O

O O B W N =~

Configuring JSON Formatting 3

Custom Pretty Printer

If you don’t like the way the default pretty printer works, e.g., you don’t want a space before
the colon, only after (which is a common alternative format), then you’ll need to create a custom
implementation of the PrettyPrinter interface. For a minor modification like this, you can subclass
the DefaultPrettyPrinter class and override the method that writes out the name and value fields
as follows:

package com. jitterpig. jacksoncookbook;
import com.fasterxml. jackson.core.util.DefaultPrettyPrinter;

public class ModifiedPrettyPrinter extends DefaultPrettyPrinter {
@0verride
public void writeObjectFieldValueSeparator(JsonGenerator jg)
throws IOException {
if (_spacesInObjectEntries) {
jg.writeRaw(": ");
} else {
jg.writeRaw(':");

The code above was copied from the DefaultPrettyPrinter’s implementation of this method, with
the only change in line 10 where I removed the space before the colon.

To use this, pass an instance of the pretty printer to the mapper: line 4 below is using an instance of
my ModifiedPrettyPrinter.

PrettyPrinter prettyPrinter = new ModifiedPrettyPrinter()
Book jacksonCookbook = new JacksonCookbook();
String json = objectMapper
.writer(prettyPrinter)
.writeValueAsString(jacksonCookbook);
System.out.println(json);

Configuring JSON Formatting 4

The output from the Modi fiedPrettyPrinter looks like this:

{
"title": "The Jackson Cookbook",
"subtitle": "JSON Recipes in Java",
"author": {
"name": {
"first": "Ted",
"middle": "M",
"last": "Young"
1,
"twitterId": "@jitterted",
"website": "http://about.me/tedmyoung”
3,
"url": "https://leanpub.com/jacksoncookbook",
"language": "English",
"version": "@.1"
}

You can also subclass the compact or minimal pretty printer (i.e., the one that’s used if you
don’t specify otherwise) by extending the MinimalPrettyPrinter class. If you want to make more
substantial changes to how the JSON is formatted, you may want to implement the PrettyPrinter
interface directly. However, I haven’t come across the need to do that.

Configuring JSON Formatting 5

Recipe: Suppress null values globally

If you have property values in your data that can be nul1, but don’t want them serialized when they
are, you can do the following to make the setting global for all uses of this ob jectMapper reference:

objectMapper.setSerializationInclusion(JsonInclude. Include.NON_NULL);

If you only want to do this on a per-class basis, you can add the @JsonInclude annotation above the
class or interface definition:

@JsonSerialize(include = Inclusion.NON_NULL)
public class HasNullValues {
private String optionalSecondAddress; // nullable field

Options for this value are:

+ ALWAYS - the default, which means all properties are serialized. This is the default.

« NON_NULL - as used above: only non-null properties are serialized.

« NON_DEFAULT - only serializes properties if they differ from the defaults for that object. Defaults
are the values of properties when instantiated using the no-argument constructor. Note that
this applies to arrays as well.

— This is useful for saving bandwidth: if the defaults are the same on both sides of the
serialization, there’s no point in serializing that information.

« NON_EMPTY - only serializes properties that are not “empty”, where empty includesnull as well
as:

Arrays: length ==

Collections: isEmpty() is true (e.g., Map, List, etc.)
Date: the time stamp value is @

String: length ==

Configuring JSON Formatting 6

Recipe: Ordering properties in JSON output

Sometimes you’ll want the properties that in your JSON output to be in a specific order, perhaps
because you have tests or clients that rely on the ordering (I'd try to avoid that, but sometimes it’s
not under your control), or you want it to be easier to find a certain property when looking at the
JSON during debugging.

Ordering per-class

To order on a per-class basis, use the @JsonPropertyOrder annotation:

@JsonPropertyOrder ({"id", "symbol"})
public class Currency

public String symbol;

public String shortName;

public String longName;

public long id;

This will ensure that the id property will be first, followed by the symbol property, with the rest in
an undetermined order. For example:

{
"id" : 1239129,
"symbol" : "$",
"shortName" : "USD",
"longName" : "U.S. Dollar"
}

If you wanted them simply in alphabetic order, you would use the alphabetic parameter in the
annotation:

@JsonPropertyOrder (alphabetic = true)
public class Currency ({

Configuring JSON Formatting 7

Results in:

{
"id" : 1239129,
"longName" : "U.S. Dollar",
"shortName" : "USD",
"symbol" : "$"

These two ordering parameters can be combined, so you can ensure some properties are first, with
the rest alphabetically ordered:

@JsonPropertyOrder(value = {"id", "symbol"}, alphabetic = true)
public class Currency {

With the result:
{
"id" : 1239129,
"symbol" : "$",
"longName" : "U.S. Dollar",
"shortName" : "USD"
}
Globally ordering

If you always want the properties sorted alphabetically, configure the ObjectMapper instance
directly:

objectMapper .enable(MapperFeature.SORT_PROPERTIES_ALPHABETICALLY);

Ordering keys in maps

Note that the above settings won’t affect the order of the contents of any maps that you have (e.g.,
a HashMap). If you want the output of maps to be ordered by their keys, you’ll need to turn on the

ORDER_MAP_ENTRIES_BY_KEYS feature:

objectMapper.enable(SerializationFeature.ORDER_MAP_ENTRIES_BY_KEYS);

General Ob jectMapper tip

Configuring JSON Formatting

ObjectMapper is just an easy way to get access to ObjectReaders and ObjectWriters.

Quoting from Tatu (the creator of Jackson):

“Any direct read/write methods in mapper are just for convenience.

ObjectWriter and ObjectReader are fully immutable and thread-safe; and they add
minor optimizations for cases where types are known (i.e. they can pre-load root
serializer/deserializer to use, just once, instead of per-call). So for most part I recommend
trying to move to using ObjectReaders and ObjectWriters more, if possible.”

Mix-Ins

This chapter will cover the way Mix-Ins can be used to solve certain problems using Jackson with
legacy or third-party code.

Value Instantiators

This chapter will cover how to use Value Instantiators for instance creation when@JsonCreator isn’t
enough.

Handling Polymorphic Types

This chapter will cover how to handle deserializing JSON that contains information about the object’s
type in the JSON itself.

Appendix: JSON Information

JSON Defined

The JSON “standard” is defined at http://www.json.org. The syntax is clearly defined and there are
links to JSON libraries in lots of different languages.

JSON Schema

JSON Schema is a proposed Internet draft defining a JSON media type (application/schema+json)
with the following goals: Validation, Documentation, and Hyperlinking. For details, go to the web
site at http://json-schema.org.

An example of a JSON schema for an Address is:

{

"description”: "An Address according to http://microformats.org/wiki/hcard",

"type": "object",

"properties": {
"post-office-box": { "type": "string" },
"extended-address": { "type": "string" },
"street-address": { "type": "string" },
"locality":{ "type": "string", "required": true },
"region": { "type": "string", "required": true },
"postal-code": { "type": "string" },
"country-name": { "type": "string", "required": true}

},

"dependencies": {
"post-office-box": "street-address",
"extended-address": "street-address"

}

http://www.json.org
http://json-schema.org

Appendix: JSON Tools

JSON Lint

This site* checks that your JSON is valid. If not, it points out where the problem is. Note that it can
only tell you about the next error, not all of the possible errors.

Source is on GitHub.

The JSON Validator

Douglas Crockford of JSON JS Lint
Zach Carter, pure J5 implementation of jzonlint
{
"gitle": "Jackson Cookbook™,
"subtitle™: "JS50N Recipes in Java",
"author™: {
"name": "first": "Ted",
"middle™: "Mw,
"last": "Young”
¥,
"twitterId™: "@jitterted”,
"website™: "http://about.me/tedmyoung”
T
"url™: "https://leanpub.com/jacksoncookbook™,
"language”: "English",
"version": "O0.1"
}

[Validate | Kindling | =

Results

Parse error on line 5:
"name"”: "first": "Ted", “mi

Expecting "}", ",

What happens if you forget an opening curly brace

“http://jsonlint.org/

http://jsonlint.org/
http://jsonlint.org/

Appendix: JSON Tools

JSON Editor Online

This site hosts a hierarchical JSON editor®.

JSON Editor Online

14

i
"cicle”™ : "Jackson Cookbook",
"subtitle™ : "J50N Recipes in Java",
"author™ : {
"name" : {
"first™ : "Ted",
"middle™ : "M",
"last" : "Young"”
T
"twitterId” : "@jitterted”,
"website™ : "http://about.me/tedmyoung™
T
"url"™ : "https://leanpub.com/jacksoncookbook”,
"language” : "English",
"version" : "O.1"
}

[EExparld All: ” Collapse all

LG

: Jackson Cookbook

subtitle : J50N Recipes in Java

¥ author {3}

¥ name {3}

first : Ted
middle : M

last @ Young

twitterId @ @jitterted

website : http://about.me/tednyoung

: https://leanpub.com
/jacksoncookbook

language ! English

version: 0.1

I used this to create the JSON for this book’s cover

*http://jsoneditoronline.org

http://jsoneditoronline.org
http://jsoneditoronline.org

Appendix: JSON Tools

JSON2HTML

This site® will render your JSON as text in nested boxes. A nice way to view your JSON data.

Object
Name Value
title Jackson Cookbook
subtitle |JSON Recipes in Java
author
Object *
Name Value
name
Object *
Name |Value
first Ted
middle (M
last Young
twitterld | @jitterted
website | http://about.me/tedmyoung
url https://leanpub.com/jacksoncookbook
language | English
version |0.1

Some JSON rendered by JSON2HTML

®http://json.bloople.net

15

http://json.bloople.net
http://json.bloople.net

Appendix: Java JSON Tools

JSON Schema to Java POJO

The idea of a schema for JSON is not new, but there are now tools to generate Java code from those
schemas. One such tool is jsonschema2pojo’.

"http://code.google.com/p/jsonschema2pojo/

http://code.google.com/p/jsonschema2pojo/
http://code.google.com/p/jsonschema2pojo/

	Table of Contents
	Release Notes
	Version 0.3
	Version 0.2
	Version 0.1

	Acknowledgments
	Introduction
	Problems Welcome!

	Configuring JSON Formatting
	Recipe: Make JSON Output More Readable
	Recipe: Suppress null values globally
	Recipe: Ordering properties in JSON output
	General ObjectMapper tip

	Mix-Ins
	Value Instantiators
	Handling Polymorphic Types
	Appendix: JSON Information
	JSON Defined
	JSON Schema

	Appendix: JSON Tools
	JSON Lint
	JSON Editor Online
	JSON2HTML

	Appendix: Java JSON Tools
	JSON Schema to Java POJO

