

Idiomatic Gradle Plugins
25 Recipes for Authors

Schalk Cronjé

This book is for sale at http://leanpub.com/idiomaticgradle

This version was published on 2018-12-20

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing
process. Lean Publishing is the act of publishing an in-progress ebook using lightweight tools and
many iterations to get reader feedback, pivot until you have the right book and build traction once
you do.

© 2015 - 2018 Schalk Cronjé

http://leanpub.com/idiomaticgradle
http://leanpub.com/
http://leanpub.com/manifesto

Tweet This Book!
Please help Schalk Cronjé by spreading the word about this book on Twitter!

The suggested hashtag for this book is #idiomaticGradle.

Find out what other people are saying about the book by clicking on this link to search for this
hashtag on Twitter:

#idiomaticGradle

http://twitter.com
https://twitter.com/search?q=%23idiomaticGradle
https://twitter.com/search?q=%23idiomaticGradle

Contents

Avoiding Groovy Version Mismatch . 1

Collection of Files . 3

Collection of Strings . 5

Property Maps . 8

Allow user to override specific version of underlying in-process library 11

Add SourceSet Support for JVM Language . 17

Create Safe Filenames From Inputs . 28

Self-referencing plugin . 29

Bibliography . 32

Avoiding Groovy Version Mismatch
Summary

As part of plugin development, it is highly probable that a plugin uses Groovy as the implementation
or testing language. (As mentioned before, all recipes in this book assume Groovy as the implemen-
tation language). When relying on other dependencies that has Groovy as a transitive dependency,
the build can fail due to a Groovy version mismatch.

Solution

Exclude groovy-all for the dependency that is adding it as a transitive dependency. If the plugin is
part of a multi-project build, then exclude groovy-all for all configurations

Examples

When using Spock Framework¹ for unit testing, the version of Groovy that is resolved is usually
different from that of localGroovy(). Exclude groovy-all for Spock.

Customising transitive dependencies

1 testCompile ('org.spockframework:spock-core:1.0-groovy-2.0') {

2 exclude module : 'groovy-all'

3 }

The Groovy VFS Gradle Plugin is built as part of a multi-project build. The main artifact it relies
upon, is in another subproject called groovy-vfs and this is a pure Groovy implementation. As
groovy-vfs is an independent distributed jar, it is compatible with a range of Groovy versions.
When consumed by the plugin, resolving transitive dependencies will cause a version mismatch. In
such a case exclude groovy-all for all configurations.

¹http://docs.spockframework.org/en/latest

http://docs.spockframework.org/en/latest
http://docs.spockframework.org/en/latest

Avoiding Groovy Version Mismatch 2

Gradle plugins in multi-project builds

1 configurations.all {

2 exclude module : 'groovy-all'

3 }

4

5 dependencies {

6 compile project (':otherProject')

7 compile localGroovy()

8 }

Line #2: Exclude groovy-all from all configurations. When run, the correct groovy-all jar
will be made available on the classpath due to localGroovy()

Gradle API Updates

As from Gradle 2.8 the version of the bundled Groovy has moved to 2.4.4 (from 2.3.10 as opposed to
Gradle 2.7). This results in the Spock Framework version being of the incorrect version. Although it
is recommended to build plugins with Gradle 2.0, there are cases where a plugin might rely on APIs
in later Gradle releases. A plugin developer might also choose to make it as easy to build and test a
plugin with a later version without having to tweak the build script.

Covering different versions of Spock Framework

1 ext {

2 spockGroovyVer = GroovySystem.version.replaceAll(/\.\d+$/,'')

3 }

4

5 dependencies {

6 testCompile ("org.spockframework:spock-core:1.0-groovy-${spockGroovyVer}") {

7 exclude module : 'groovy-all'

8 }

9 }

References

• Peter Niederweser on excluding Groovy dependencies
• Cedric Champeau on obtaining Groovy Version

Collection of Files
Summary

Many tasks need one ore more properties that need to be a collection of files. It is important to keep
the configuration readable and easy to use by script authors.

Solution

Store the configuration entity as a list of Object in the task class. Convert it to files only when
accessed. This will allow for lazy evaluationwhen needed, replacement of list content and appending
of more files to the list.

Examples

Assume for the moment that a task has a list of input sources files called documents.

Task class code snippet for file collections

1 @InputFiles

2 FileCollection getDocuments() {

3 project.files(this.documents)

4 }

5

6 void setDocuments(Object... docs) {

7 this.documents.clear()

8 this.documents.addAll(docs as List)

9 }

10

11 void documents(Object... docs) {

12 this.documents.addAll(docs as List)

13 }

14

15 private List<Object> documents = []

Collection of Files 4

Line #1: Create a getter and annotate with @InputFiles or @OutputFiles. The purpose of
the getter is to translate upon access to a FileCollection object.

Line #3: Translate from the list of Object using the built-in project.files method. This
handles a large variety of types including files, strings and closures as well as lists and
arrays thereof.

Line #6: Use a setter to allow for setDocuments 'foo','bar' replacement of current content
with a new set of content. This becomes very useful should another plugin author decide to
extend your task type.

Line #11: Use a method with the name of the property to allow for a expressive documents
'foo','bar' style.

Line #15: The property is left private as appropriate access is already provided.

Usage in build script

1 // Assuming we have a task called 'documentBinder'

2 documentBinder {

3

4 setDocuments '/path/to/doc', new File('/path/to/other/doc')

5

6 documents '/path/to/doc', new File(' / path / to / other / doc ')

7

8 documents project.file('add/other/doc')

9

10 documents { '/even/add/from/closure' }

11 }

Line #4: Clear any existing document list, and replace with the given list. List can contain
anything that project.files can convert to File objects.

Line #6: Append more documents to existing list

Line #10: Even closures can be used to allow for late evaluation of documents

Collection of Strings
Summary

The use of string collections as task properties is quite common. It is important to keep the
configuration readable and easy to use by script authors. The use of toString() by script authors
will lead to less readable (and ugly) build scripts and as such plugin authors, should attempt to
handle conversion from a variety of class types to String objects behind the scenes.

Solution

Store the configuration entity as a list of Object. Convert it to String objects only when accessed.
Allow for replacement of list content or appending to the list. If required, also allow for lazy
evaluation only at the point of task execution.

Examples

The JRubyExec task type in the JRuby Gradle plugin allows the script author to provide a list of
arguments that can be passed to a Ruby script when run from Gradle. In order to make it easy for
authors, these arguments can be provided as strings, objects convertible to strings or even closures.

Collection of Strings 6

Task class code snippet for string collections

1 @Input

2 List<String> getScriptArgs() {

3 CollectionUtils.stringize(

4 this.scriptArgs.collect { it ->

5 it instanceof Closure ? (it as Closure).call() : it

6 } .flatten()

7)

8 }

9

10 void setScriptArgs(Object... args) {

11 this.scriptArgs.clear()

12 this.scriptArgs.addAll(args as List)

13 }

14

15 void scriptArgs(Object... args) {

16 this.scriptArgs.addAll(args as List)

17 }

18

19 private List<Object> scriptArgs = []

Line #1: Create a getter and annotate with @Input or @Output. The purpose of the getter is
to translate upon access to a collection of String objects.

Line #2: Collections usually are Set or List.

Line #3: Translate from the list of Object using the built-in
org.gradle.util.CollectionUtils.stringize method. This handles a collection
containing a large variety of types including files and strings, but not closures.

Line #5: Add special cases for handling closures.

Line #6: Flatten out embedded collections.

Line #10: Use a setter to allow for setScriptArgs 'foo','bar' replacement of current
content with a new set of content. This becomes very useful should another plugin author
decide to extend your task type or when a task is modified via an extension.

Line #15: Use a method with the name of the property to allow for a expressive scriptArgs
'foo','bar' style.

Line #19: The property is left private as appropriate access is already provided.

Collection of Strings 7

Configuration snippet

1 // Assuming we have a task called 'runMyScript'

2 runMyScript {

3 setScriptArgs '--file', new File('/path/to/other/doc')

4

5 scriptArgs '--output', new File('/path/to/other/doc')

6 scriptArgs "${{->delayedString}}"

7 scriptArgs { 'string in closure' }

8 scriptArgs { ['list in closure','with multiple elements'] }

9 }

Line #3: Clear any existing arguments list, and replace with the given list. List can contain
any number of items that can be converted to a string.

Line #5: Append more arguments to the existing list

Line #6: A GString containing a closure returning a single string

Line #7: A closure returning a single string

Line #8: A closure returning a list of strings

Property Maps
Summary

Another tool or system that is being wrapped by a Gradle plugin might need a list of free-form
properties passed unto it. The underlying system might not perform any further validation, also
ignoring anything that is not applicable.

Solution

The Groovy language already provides for an easy declaration of property maps and this feasture
can be used as is within the task configuration DSL. Declare the property map as a private member
and add getter, replacement (via setter) and append methods. Keeping the property map as private
prevents accidental assignment from the configuration closure as this could be confusing to script
authors or consumers.

Examples

The Asciidoctor Gradle plugin needs to pass a set of attributes to the underlying Asciidoctor engine.
Attributes that are not required by the Asciidoctor engine will be silently ignored. This makes the
application of a property map a very good fit, as superfluous attributes can be stored, but will not
cause a runtime error.

Property Maps 9

Task class code snippet

1 @Input

2 Map getAttributes() {

3 this.attrs

4 }

5

6 void setAttributes(Map m) {

7 this.attrs=m

8 }

9

10 void attributes(Map m) {

11 this.attrs+=m

12 }

13

14 private Map attrs = [:]

Line #1: Annotate the getter as opposed to the property.

Line #6: Use the setter to replace one property map with another

Line #10: Use the basename to insert more properties into the existing map

Line #14: Keep the property private (or use @PackageScope) to keep it from accidental usage
within the configuration closure.

Usage of property map in Asciidoctor plugin

1 ext {

2 predefined = [doctype : 'book']

3 }

4

5 asciidoctor {

6 setAttributes toclevel : '3', revnumber : '1.0'

7

8 attributes 'source-highlighter': 'coderay'

9

10 attributes toc : 1, toclevel : '2'

11

12 attributes predefined

13

14 }

Property Maps 10

Line #6: All existing properties can be removed and replaced with a new set

Line #8: Properties can be past one per line. (aids readability and loops)

Line #10: Multiple properties can be passed per call

Line #12: Other property maps can be passed and will be merged.

Allow user to override specific version
of underlying in-process library
Summary

In many cases a plugin consumer does want to be locked down to one version of a dependency. A
plugin author might thus want to allow the user to override the default dependency with different
version.

Solution

Create a project extensionwhere the version can be set. Add an afterEvaluate closure, which in turn
will add the dependency to the appropriate configuration group at the appropriate time. Optionally
a classloader can be used to load the class when the task is executed.

Examples

The Asciidoctor Gradle plugin relies on a specific version of Asciidoctorj. When a new version of
Asciidoctorj comes out, there might be a delay before the plugin is released. Alternatively the plugin
author might want to experiment with development versions of Asciidoctorj before release.

The first step is to create an extensionwhereby the script author can set the version. Even though this
could be handled directly by the script author using a dependencies block, the use of an extension
provides clearer intent and reduces misunderstanding as to which dependency should be used.

Create extension

1 class AsciidoctorJExtension {

2 String version = '1.5.0' //

3

4 AsciidoctorJExtension(Project proj) {

5 project=proj

6 }

7

8 @PackageScope

9 Project project

10 }

Allow user to override specific version of underlying in-process library 12

Line #2: Set the default version as to the one that would be recommended to be used by the
plugin author.

Once the extension is created, it can be added when the plugin is applied.

Add extension in plugin
1 void apply(Project project) {

2 project.extensions.create('asciidoctorj',AsciidoctorJExtension,project)

3 project.configurations.maybeCreate('internal_asciidoctorj')

4

5 project.afterEvaluate {

6 project.dependencies {

7 internal_asciidoctorj "org.asciidoctor:asciidoctorj:${project.asciidocto\

8 rj.version}"

9 }

10 }

11 }

Line #2: Create an extension called asciidoctorj.

Line #3: Create a configuration called internal_asciidoctorj.

Line #7: Add the dependency to the internal_asciidoctorj at the end of the configuration
phase.

Noteworthy in the previous code snippet is the use of the interpolated GString to det the dependency.
As it is within the closure added to afterEvaluate it be only be evaluated at the end of the
configuration phase, by which time the correct version will already have been set.

When the plugin is published, the script author will simply be able to override the version of
asciidoctorj by doing as below.

Setting the version in build.gradle
1 asciidoctorj {

2 version = '1.5.2'

3 }

Line #2: User can now override the version of the library.

In some cases it might be necessary to lazy load the object as well. In this case a custom classloader
is utilised. The use of term classloader can induce fear in those not-so-Java developers, but there is
no need for angst when loading it as part of a plugin. Loading can be accomplished by a little bit of
code within the task action.

Allow user to override specific version of underlying in-process library 13

Use a custom classloader

1 def urls = project.configurations.internal_asciidoctorj.files.collect { it.toURI().t\

2 oURL() }

3 def classLoader = new URLClassLoader(urls as URL[], Thread.currentThread().contextCl\

4 assLoader)

5 def asciidoctorInstance = classLoader.loadClass('org.asciidoctor.Asciidoctor$Factory\

6 ')

Line #1: Get all of the files in the internal_asciidoctorj configuration that was created
when the plugin was applied.

Line #2: Create the classloader for all those files. For simplicity the class loader that is
currently in context is used (i.e. the context within which the task action is executed within).

Line #3: Load the class that is required. One or more classes can be loaded if needed.

Gradle API Updates

A new way of handling default dependencies was introduced in Gradle 2.5 in the form of
defaultDependency². This removes the need for an afterEvaluate closure and instead allows for a
closure to be called when a configuration is first resolved and no specific dependency was provided
elsewhere. This approach does not necessarily provide a shorter code form, but it does provide a
standardised way of dealing with dependencies going forward.

Alternative plugin approach for Gradle 2.5+

1 void apply(Project project) {

2 project.with {

3 def asciidoctorj = extensions.create('asciidoctorj',AsciidoctorJExtension,pr\

4 oject)

5 def conf = configurations.maybeCreate('internal_asciidoctorj')

6 conf.defaultDependencies { deps ->

7 deps.add(project.dependencies.create(

8 "org.asciidoctor:asciidoctorj:${asciidoctorj.version}")

9)

10 }

11 }

12 }

²https://docs.gradle.org/2.5/release-notes#simpler-default-dependencies

https://docs.gradle.org/2.5/release-notes#simpler-default-dependencies
https://docs.gradle.org/2.5/release-notes#simpler-default-dependencies

Allow user to override specific version of underlying in-process library 14

Line #3: Create extension as before

Line #4: Create configuration as before

Line #5: Call defaultDependencies on the configuration. The closure will be passed

the DependencySet‘ from the configuration.

Line #7: Use the create call on the project’s DependencyHandler object to create a de-
pendency that is not associated with a configuration and then add it to the provided
DependencySet.

A plugin author wishing to advantage of the new functionality on offer, but still want to maintain
one codebase with the largest possible version compatibility can resort to some minute Groovy
metaprogramming.

Allow plugin to select functionality automatically

1 void apply(Project project) {

2 project.extensions.create('asciidoctorj',AsciidoctorJExtension,project)

3 def conf = project.configurations.maybeCreate('internal_asciidoctorj')

4

5 if(conf.respondsTo('defaultDependencies')) {

6 conf.defaultDependencies { deps ->

7 deps.add(project.dependencies.create(

8 "org.asciidoctor:asciidoctorj:${project.asciidoctorj.version}")

9)

10 }

11 } else {

12 project.afterEvaluate {

13 project.dependencies {

14 internal_asciidoctorj "org.asciidoctor:asciidoctorj:${project.asciid\

15 octorj.version}"

16 }

17 }

18 }

19 }

Line #2: Create extension and configuration as before

Line #5: Check whether configuration object support the defaultsDependencies method
and select appropriate approach.

Allow user to override specific version of underlying in-process library 15

Caveats

The original implementation relies on the assumption that a script author will mostly not be aware
of the internal configuration and therefore not try to add additional items into the configuration.
Should the script author decide to explicitly set the Maven coordinates of the dependency against
that of the internal configuration name, the probability is good that the newer version of the
dependency will win out. It is only if the resolver strategy is explicitly modified by the script author,
that outcome might be different.

In this regards, use of the new defaultDependencies will introduce a behavioural change. The
version that the script author supplied, will be taken over any default version. Should a plugin
author like to bring the same behaviour to older versions of Gradle it is will possible within the
afterEvaluate closure as illustrated by the following code block.

Only add dependency if one does not exist already

1 project.afterEvaluate {

2 def hasDep = project.configurations.internal_asciidoctorj.dependencies.find {

3 it.group == 'org.asciidoctor' && it.name == 'asciidoctorj'

4 }

5 if (!hasDep) {

6 project.dependencies {

7 internal_asciidoctorj "org.asciidoctor:asciidoctorj:${project.asciidocto\

8 rj.version}"

9 }

10 }

11 }

It has to be remembered that this kind of tinkering with internal configurations by script
authors are rare and there is very little need to provide safety against it within the plugin.
A script author that is in the need of performing such remediation should well be aware of
the associated dangers.

A second problem may arise in the use maybeCreate when creating the configuration. In contract
to the create which will emit an exception if the configuration already exists, maybeCreate will re-
use the existing one. This has the advantage of more than one plugin using the same configuration,
or to allow a script author to manipulate the configuration prior to the plugin being applied. Both
these cases, however, can also lead to unexpected side-effects. It is possible to modify creation of the
configuration as below:

Allow user to override specific version of underlying in-process library 16

Strict configuration creation

1 def conf = project.configurations.create('internal_asciidoctorj')

2 conf.visible = false

Line #1: Fail the build should the configuration already exists

Line #2: Restrict the scope of the configuration only to the projects where the plugin is
applied in.

This decision which approach to use is left to the plugin author. Most has advantages and
disadvantages as explained before. It is suggested that where the second approach is taken, to use a
longer configuration name that will have little change of being re-used by another plugin.

References

• A comment on defaultDependencies

Add SourceSet Support for JVM
Language
Summary

Many new languages are being created that targets the JVM. Creating a plugin for a JVM language
that follows the conventions of core languages such as Java, Groovy & Scala, may contribute to both
the popularity of Gradle and the new JVM language.

Solution

Follow conventions for JVM languages such as Groovy & Scala by doing the following:

• Implement a loose-standing source set class for the new JVM language.
• Address joint-compilation if supported by the new JVM language
• Create a base plugin class and configure defaults for source sets to recognise the new language
files.

• Follow this up by implementing Add Assemble Task Support for JVM Language.

Examples

Assume that support for a new fictitious JVM language Sprache (the German word for language)
will be added. All source files for Sprache will be found in .sprache files. Sprache, like Groovy and
Scala, will also support joint-compilation with Java files.

An independent source set class is the easiest way to start. Unfortunately the Gradle API does not
support all of the necessary functionality in the public API and therefore some internal APIs will be
required:

Add SourceSet Support for JVM Language 18

Source set imports

1 import org.gradle.api.file.SourceDirectorySet

2 import org.gradle.util.ConfigureUtil

3 import org.gradle.api.internal.file.DefaultSourceDirectorySet

4 import org.gradle.api.internal.file.FileResolver

Line #3: It is far easier to re-use DefaultSourceDirectorySet, than to perform
a full custom implementation of the SourceDirectorySet interface. The API for
DefaultSourceDirectorySet has remained stable throughout Gradle 2.0 - 2.11, but has been
changed in Gradle 2.12.

Line #4: FileResolver is an internal API which helps Gradle find files and is required by
DefaultSourceDirectorySet.

Understanding source set behaviour
Very important to notice is that this source set class does not implement the SourceSet interface.
The latter is something that will be exposed automatically to the build script by Gradle, glue-ing
in bits via convention mapping. Nor surprisingly, this is a huge point of confusion for many plugin
writers.

SourceSet has four getter methods by default from which source is obtained - getJava, getAllJava,
getResources and getAllSource.

• getJava will only return Java source files from the java source set.
• getAllJava will return Java source files found in the java source set as well as any other
language source set. For instance if the Groovy plugin was applied, it will also return Java
files from the groovy source set.

• getResources will only return files defined as resources.
• getAllSource will return all source files plus all resources.

Things can get more confusing for JVM language plugins. This is best illustrated via the Groovy
plugin. When the mentioned plugin is applied, two more source accessors will appear on the
SourceSet instance, being getGroovy and getAllGroovy. These twomethods exhibit some potentially
confusing behaviour:

• getGroovy will return both Java & Groovy source files from the groovy source set.
• getAllGroovy will only return Groovy source files from the groovy source set. (!)

It can argued that the two methods should have been named the other way around. However, this
is the state of Gradle today and plugin authors should just be aware of this naming convention.

Add SourceSet Support for JVM Language 19

Most of the work for a source set is done in the constructor. Two directory sets are defined - one
that includes only the language-specific files and one that could contain both the former and some
additional files.

Source set definition

1 class SpracheSourceSet {

2

3 static final String LANG_NAME = 'sprache'

4

5 SpracheSourceSet(String displayName, FileResolver fileResolver) {

6 fullSourceSet = createSourceDirectorySet(

7 "${displayName} ${LANG_NAME.capitalize()} source",

8 fileResolver

9)

10 fullSourceSet.filter.include("**/*.java", "**/*.sprache")

11

12 spracheOnlySourceSet = createSourceDirectorySet(

13 "${displayName} ${LANG_NAME.capitalize()} source",

14 fileResolver

15)

16 spracheOnlySourceSet.source(fullSourceSet)

17 spracheOnlySourceSet.filter.include("**/*.sprache")

18 }

19

20 private final SourceDirectorySet fullSourceSet

21 private final SourceDirectorySet spracheOnlySourceSet

22 }

Line #3: The language namewill be used in a number of places as part of convention naming.
It is useful to define it once-off.

Line #9: Define a directory set that will return all source files found under a given directory
that is of interest to this source set.

Line #10:As Sprache supports joint-compilation, return both Java & Sprache files. If Sprache
did not support joint-compilation, then the Java part of the filter could have been left out.

Line #15: Define a directory set that will return only Sprache source files found under a
given file tree.

Line #16: Add in all files that were found by the joint-compilation file tree.

Line #17: Filter this file tree to only include Sprache files.

Wrapping internal APIs into seperate methods can be very useful to help with later mainte-
nance should a class or interface change with a new release of Gradle. In the case of creating

Add SourceSet Support for JVM Language 20

DefaultSourceDirectorySet this version if very simplistic for for Gradle 2.0 - 2.11, but see notes
on Gradle API changes at the end of this recipe.

Wrapping DefaultSourceDirectorySet

1 private DefaultSourceDirectorySet createSourceDirectorySet(

2 String name,

3 FileResolver fileResolver

4) {

5 new DefaultSourceDirectorySet(name,fileResolver)

6 }

What remains for the source set definition is to add some getter methods and a single method to
allow configuration via closure.

Add SourceSet Support for JVM Language 21

Source set getter and configuration methods

1 class SpracheSourceSet {

2 /* Constructor and fields defined previously */

3

4 SourceDirectorySet getSprache() {

5 fullSourceSet

6 }

7

8 SpracheSourceSet sprache(Closure configureClosure) {

9 ConfigureUtil.configure(configureClosure, getSprache())

10 return this

11 }

12

13 SourceDirectorySet getAllSprache() {

14 spracheOnlySourceSet

15 }

16 }

Line #4: Return the source set containing all of the Sprache and Java files.

Line #8: Allow for configuration of a source set via closure.

Line #9: Due to the way the directory sets have been set up in the constructor it is only
necessary to configure the ‘sprache’ sourceset. (Calling allSprache will simply filter out
anything it does not need).

Line #13: Return the source set containing only Sprache files.

Add SourceSet Support for JVM Language 22

Laying out the base plugin

1 import org.gradle.api.internal.plugins.DslObject

2 import org.gradle.api.internal.project.ProjectInternal

3 import org.gradle.api.tasks.compile.AbstractCompile

4 import org.gradle.util.GradleVersion

5

6

7 class SpracheBasePlugin implements Plugin<Project> {

8

9 static final String LANG_NAME = SpracheSourceSet.LANG_NAME

10

11 void apply(Project project) {

12 project.with {

13 apply plugin : JavaBasePlugin

14 }

15

16 createSourceSetDefaults(project)

17 }

18 }

Line #9: The language name will be used in number of places as part of convention naming.
It is useful to define it once-off, but just re-using the one already defined in the source set
class.

Line #13: The JavaBasePlugin is required for all JVM language implementations. It provides
the core support for JVM source sets.

In order to instantiate this source set and attach it to a named global source set, some reliance on
internal APIs are required once again.

Internal APIs required for source set creation

1 import org.gradle.api.internal.plugins.DslObject

2 import org.gradle.api.internal.project.ProjectInternal

3 import org.gradle.api.tasks.compile.AbstractCompile

4 import org.gradle.util.GradleVersion

Add SourceSet Support for JVM Language 23

Creating the base plugin for a JVM language.

1 class SpracheBasePlugin implements Plugin<Project> {

2 /* For other code see previous code block */

3

4 void createSourceSetDefaults(Project project) {

5 def jpc = project.convention.getPlugin(JavaPluginConvention)

6 jpc.sourceSets.all { SourceSet srcSet ->

7 final SpracheSourceSet langSourceSet = new SpracheSourceSet(

8 "${LANG_NAME.capitalize()} ${srcSet.name}",

9 (project as ProjectInternal).fileResolver

10)

11 final SourceDirectorySet dirSet = langSourceSet."${LANG_NAME}"

12

13 new DslObject(srcSet).convention.plugins.put(LANG_NAME,langSourceSet)

14 dirSet.srcDir("src/${srcSet.name}/${LANG_NAME}")

15 srcSet.allJava.source(dirSet)

16 srcSet.allSource.source(dirSet)

17 srcSet.resources.filter.exclude {

18 FileTreeElement fte -> srcSet."${LANG_NAME}".contains(fte.file)

19 }

20 }

21 }

22 }

Line #7: Instantiate the Sprache source set given the provided source set name as well as the
Gradle’s internal FileResolver instance.

Line #13: Glue this source set to the global SourceSet container instance known as
sourceSets.

Line #14: Set a default directory where to find sources, should no other directory be set.

Line #15: Since joint-compilation, tell Gradle to also Java files in this source set.

Line #16: Add all of the Sprache sources to the named global named source set.

Line #17: Ensure Sprache source files do not end up in resources.

The plugin is now ready to have the assemble tasks added. It is also a Gradle convention to create a
base plugin for the language which provides all of the functionality to find source files and assemble
them. The base plugin does not provide any directory layout conventions. See theAdd Source Layout
Conventions for JVM Language recipe on how to accomplish this.

Add SourceSet Support for JVM Language 24

Gradle API Updates

The way of adding source sets for a new language is also changing with the new incubating model
([GradleDocs2], [GradleDocs3], [GradleDocs4], [GradleDocs5]).

As amore direct consequence to this recipe, the internal API of the constructors for DefaultSourceDirectorySet
have changed in Gradle 2.12 adding a third parameter in all cases. The latter is another internal
interface being DirectoryFileTreeFactory from the org.gradle.api.internal.file.collections
package. Luckily it easy to construct an instance of this via DefaultDirectoryFileTreeFactory

which is in the same internal package. This poses a dilemma for the plugin author, which has
to make a decision on whether to release one version of the plugin for earlier versions of Gradle
and one for 2.12 and beyond. Luckily there is a way to workaround this through the use of some
metaprogramming, even if it results in more code.

Add SourceSet Support for JVM Language 25

Handling API change across multiple Gradle versions

1 @CompileDynamic

2 private DefaultSourceDirectorySet createSourceDirectorySet(

3 String name,

4 FileResolver fileResolver

5) {

6 DefaultSourceDirectorySet.constructors.findResult { ctor ->

7 def params = ctor.parameterTypes

8 if(params == [String,FileResolver] as Class[]) {

9 return ctor.newInstance(name,fileResolver)

10 } else if (params == [String,String,FileResolver] as Class[]) {

11 return null

12 }

13 try {

14 final String pkgName = 'org.gradle.api.internal.file.collections'

15 Class<?> dftfInterface = Class.forName(

16 "${pkgName}.DirectoryFileTreeFactory"

17)

18 Class<?> fileTreeFactory = Class.forName(

19 "${pkgName}.DefaultDirectoryFileTreeFactory"

20)

21 if(params == [String,FileResolver,dftfInterface] as Class[]) {

22 return ctor.newInstance(name,fileResolver,fileTreeFactory.

23 newInstance())

24 }

25 } catch (ClassNotFoundException){}

26 null

27 }

28 }

Add SourceSet Support for JVM Language 26

Line #8: Look for the pre-Gradle 2.12 constructor

Line #9: Create a new instance of DefaultSourceDirectorySet.

Line #11: If the alternative three parameter constructor from pre-Gradle 2.12 is found, ignore
it.

Line #17: Try to load the new DirectoryFileTreeFactory interface. If it is not found, then
this is not a supported Gradle version. 2.0-2.11 is already covered by the previous two
conditions, so this also acts as a safeguard to detect API changes beyond 2.12

Line #20: Try to load the DefaultDirectoryFileTreeFactory implementation class .

Line #21: Check whether there is a constructor which takes DirectoryFileTreeFactory

as a parameter. It is important that the interface class is used and not the name of the
implementation class.

Line #23: Instantiate DefaultSourceDirectorySet using the new three parameter construc-
tor, passing an instance of DefaultDirectoryFileTreeFactory.

Line #25: The catch block is required to take care of the earlier Class.forName calls. The
result is set to null as to indicate that no match was found.

Add the above code now ensure that the plugin can work across all of Gradle 2.0 - 4.10.3. In another
API breaking change occurs this code will result in a NPE being emitted. A plugin author might
want to wrap the code up into another exception that provides a more meaningful message.

There is also an alternative, potentially shorter and slightly more readable way that has been
suggested by Lance Semmens.

Alternative way of handling API change across multiple Gradle versions

1 if(GradleVersion.current() < GradleVersion.version('2.12')) {

2 DefaultSourceDirectorySet.getConstructor(String,FileResolver).

3 newInstance(name,fileResolver)

4 } else {

5 final String pkgName = 'org.gradle.api.internal.file.collections'

6 DefaultSourceDirectorySet.getConstructor(

7 String,FileResolver,Class.forName(

8 "${pkgName}.DirectoryFileTreeFactory"

9)).newInstance(

10 name,

11 fileResolver,

12 Class.forName(

13 "${pkgName}.DefaultDirectoryFileTreeFactory"

14).newInstance()

15)

16 }

Add SourceSet Support for JVM Language 27

Line #1: Use org.gradle.util.GradleVersion to determine the current Gradle version

Line #3: If earlier than 2.12 just construct if via the old constructor interface, otherwise use
a technique as described earlier.

References & Credits

• Dinko Srkoč for suggesting the use of metaprogramming.
• Benjamin Muschko - How SourceSet concept is added.
• Lance Semmens for suggesting an alternative way of solving the Gradle 2.12 problem.

Create Safe Filenames From Inputs
Summary

In certain conditions it might be necessary to create file or path names from input data over which
the plugin author might not have control. Creating safe filenames in a portable manner can be
erroneous and contain traps for the unwary or inexperienced cross-platform developer.

Solution

Use the internal API org.gradle.internal.FileUtils.toSafeFileName utility function.

As this is internal it might change in a future version, but at the time of writing it have been
the same from Gradle 2.0 - 2.12.

Examples

The Asciidoctor plugin produces outputs in different folders for each of the backends that it supports.
Should a new backend be added that may contain a character that is invalid on a specific operating
system (for instance a : on Windows), that will cause the plugin to fail. By passing the name
through org.gradle.internal.FileUtils.toSafeFileName an operating system-safe filename will
be generated

Using toSafeFileName

1 File backendDirname(final File baseDir, final String backend) {

2 new File(baseDir, org.gradle.internal.FileUtils.toSafeFileName(backend))

3 }

Self-referencing plugin
Summary

There are certain plugins that require themselve as part of the build. One common solution is to
always use the previous version of the plugin for the development of the new. Unfortunately there
are cases where the build process relies on code that exists only in the new (unreleased) plugin
version.

Solution

Load the source code directly into the Gradle process via a GroovyScriptEngine instance. The tasks
from the plugin will be loaded in the same way as if the compiled plugin is loaded in another build
script.

Examples

The Unofficial Bintray plugin for Gradle might need the latest functionality in the plugin in order to
publish a new version to Bintray. Apply this short code snippet into the build.gradle file to ensure
that the plugin is loaded directly from the source code instead of a built jar.

Code snippet for build script

1 apply plugin: new GroovyScriptEngine(

2 ['src/main/groovy','src/main/resources'].

3 collect{ file(it).absolutePath }

4 .toArray(new String[2]),

5 project.class.classLoader

6).loadScriptByName('book/SelfReferencingPlugin.groovy')

Line #2: Add each toplevel source folder that will be required to build the plugin

Line #4: Set count to number of items in list defined above

Line #6: Set relative path below source folders where plugin class is to be found.

The previous example works in most cases, but when certain Gradle APIs are used, they are found
in JARs that are in the libs/plugins folder of the Gradle distribution. In such a case a little bit more
needs to be done.

Self-referencing plugin 30

Code snippet for extending the classpath
1 def pluginURLs = fileTree ("${gradle.gradleHomeDir}/lib/plugins") { include '*.jar' \

2 } .files.collect {

3 it.toURI().toURL()

4 }

5 def selfReferencingClassLoader = new URLClassLoader(

6 pluginURLs.toArray(new URL[pluginURLs.size()]),

7 project.gradle.class.classLoader as URLClassLoader

8)

9

10

11 apply plugin: new GroovyScriptEngine(

12 ['src/main/groovy','src/main/resources'].

13 collect{ file(it).absolutePath }.toArray(new String[2]),

14 selfReferencingClassLoader

15).loadScriptByName('book/SelfReferencingPlugin.groovy')

Line #3: Add all of the JARs as URLs

Line #7: The classloader used by the project instance is an extension of
java.net.URLCLassLoader, so it is just a matter of creating another URLClassLoader

instance, using the classloader from project as the parent and providing URLs to all of the
additional URLs

Line #13: Just pass the new classloader here instead of the one from project.

Caveats

This wonderful trick only works if the referenced plugin class actually compiles. If it does not,
then compilation of the build script will fail and the plugin author will be no-man’s land. The
recommendation is to wrap the self-referencing code in a conditional block that can be turned off
via a command-line property:

Build script safeguard for self-referencing plugins
1 if(!project.properties.DISABLE_GRADLETEST) {

2 /* Self-referencing code mentioned earlier go here */

3 }

Line #1: Fix a temporary problem by adding -PDISABLE_GRADLETEST to the command-line
when building.

Self-referencing plugin 31

References

• Original idea from Knut Saua Mathiesen

Bibliography
Discussion Forums

[[GHale1]] Gary Hale. Dynamic dependency version for plugin³

[[MErdmann1]] Marcin Erdmann. Generate a Java file and include it in the Sourceset of compila-
tion⁴

[[PNiederwieser1]] Peter Niederwieser. Controlling conflicting versions of Groovy⁵

[[SGreene1]] Stirling Greene. A comment on defaultDependencies⁶

[[CChampeau1]] Cedric Champeau. Groovy Version⁷

[[BMuschko2]] Benjamin Muschko. How to add a sourceSet without using any plugins⁸

[[AOberstar1]] Andrew Oberstar. Custom task with fields - assign directly or via conventionmap-
ping⁹

[[LanceJava1]] Lance Semmens. DefaultSourceDirectorySet alternative¹⁰

Software

[[AsciidoctorProject]] Asciidoctor Github Organisation. Asciidoctor Project¹¹

[[AsciidoctorJ]] Asciidoctor Github Organisation. Asciidoctorj Project¹²

[[AsciidoctorGradle]] Asciidoctor Github Organisation. Asciidoctor Gradle Plugin¹³

[[JRubyGradle]] JRuby-Gradle Github Organisation. JRuby Gradle Plugin¹⁴

[[MSBuild]] Microsoft, MSBuild on Github¹⁵

[[XBuild]] Mono Project. XBuild¹⁶

³http://discuss.gradle.org/t/dynamic-dependency-version-for-plugin/6691
⁴http://discuss.gradle.org/t/generate-a-java-file-and-include-it-in-the-sourceset-for-compilation/6940
⁵http://discuss.gradle.org/t/controlling-conflicting-versions-of-groovy-for-a-plugin/5877
⁶https://discuss.gradle.org/t/a-comment-on-defaultdependences/12331
⁷https://discuss.gradle.org/t/getting-hold-of-version-of-localgroovy/12612/3
⁸https://discuss.gradle.org/t/how-to-add-a-sourceset-without-using-any-plugins/9510
⁹https://discuss.gradle.org/t/custom-task-with-fields-assign-directly-or-via-conventionmapping/4553
¹⁰https://discuss.gradle.org/t/defaultsourcedirectoryset-alternative/15193
¹¹https://github.com/asciidoctor/asciidoctor
¹²https://github.com/asciidoctor/asciidoctorj
¹³http://plugins.gradle.org/plugin/org.asciidoctor.gradle.asciidoctor
¹⁴http://plugins.gradle.org/plugin/com.github.jruby-gradle.base
¹⁵https://github.com/microsoft/msbuild
¹⁶http://www.mono-project.com/docs/tools+libraries/tools/xbuild/

http://discuss.gradle.org/t/dynamic-dependency-version-for-plugin/6691
http://discuss.gradle.org/t/generate-a-java-file-and-include-it-in-the-sourceset-for-compilation/6940
http://discuss.gradle.org/t/generate-a-java-file-and-include-it-in-the-sourceset-for-compilation/6940
http://discuss.gradle.org/t/controlling-conflicting-versions-of-groovy-for-a-plugin/5877
https://discuss.gradle.org/t/a-comment-on-defaultdependences/12331
https://discuss.gradle.org/t/getting-hold-of-version-of-localgroovy/12612/3
https://discuss.gradle.org/t/how-to-add-a-sourceset-without-using-any-plugins/9510
https://discuss.gradle.org/t/custom-task-with-fields-assign-directly-or-via-conventionmapping/4553
https://discuss.gradle.org/t/custom-task-with-fields-assign-directly-or-via-conventionmapping/4553
https://discuss.gradle.org/t/defaultsourcedirectoryset-alternative/15193
https://github.com/asciidoctor/asciidoctor
https://github.com/asciidoctor/asciidoctorj
http://plugins.gradle.org/plugin/org.asciidoctor.gradle.asciidoctor
http://plugins.gradle.org/plugin/com.github.jruby-gradle.base
https://github.com/microsoft/msbuild
http://www.mono-project.com/docs/tools+libraries/tools/xbuild/
http://discuss.gradle.org/t/dynamic-dependency-version-for-plugin/6691
http://discuss.gradle.org/t/generate-a-java-file-and-include-it-in-the-sourceset-for-compilation/6940
http://discuss.gradle.org/t/controlling-conflicting-versions-of-groovy-for-a-plugin/5877
https://discuss.gradle.org/t/a-comment-on-defaultdependences/12331
https://discuss.gradle.org/t/getting-hold-of-version-of-localgroovy/12612/3
https://discuss.gradle.org/t/how-to-add-a-sourceset-without-using-any-plugins/9510
https://discuss.gradle.org/t/custom-task-with-fields-assign-directly-or-via-conventionmapping/4553
https://discuss.gradle.org/t/defaultsourcedirectoryset-alternative/15193
https://github.com/asciidoctor/asciidoctor
https://github.com/asciidoctor/asciidoctorj
http://plugins.gradle.org/plugin/org.asciidoctor.gradle.asciidoctor
http://plugins.gradle.org/plugin/com.github.jruby-gradle.base
https://github.com/microsoft/msbuild
http://www.mono-project.com/docs/tools+libraries/tools/xbuild/

Bibliography 33

[[Spock]] Peter Niederwieser. Spock Framework 1.0¹⁷

[[DoxygenGradle]] Schalk Cronjé. Doxygen Gradle Plugin¹⁸

[[GradleTest]] Schalk Cronjé. GradleTest Gradle Plugin¹⁹

[[GroovyVfs]] Schalk Cronjé. Groovy VFS Gradle Plugin²⁰

[[BintrayGradle]] Schalk Cronjé. Unofficial Bintray Gradle Plugin²¹

[[GnuMake]] Schalk Cronjé. GNU Make Gradle Plugin²²

Other

[[Aalmiray1]] Griffon Github Organisation, ‘Griffon Project’. Code snippet²³

[[GradleDocs1]] Gradleware Inc. Gradle 2.0 User Guide. Writing Custom Plugins²⁴

[[GradleDocs2]] Gradleware Inc. Gradle 2.9 Release Notes. Improvements to the incubating model
infrastructure²⁵

[[GradleDocs3]] Gradleware Inc. Gradle 2.10 Release Notes. DSL improvements for the Software
Model²⁶

[[GradleDocs4]] Gradleware Inc. Gradle 2.11 Release Notes. Better support for developing plugins
with the software model²⁷

[[GradleDocs5]] Gradleware Inc. Gradle 2.12 Release Notes. Experimental softwaremodel improve-
ments²⁸

[[GradleDocsWrapper]] Gradleware Inc. Gradle 2.0 User Guide. Gradle Wrapper²⁹

[[GradleTestKit]] Gradleware Inc. Gradle 2.7 User Guide. Gradle TestKit³⁰

[[GradleWrapperBug]] Gradleware Inc. Gradle 2.7 Release Notes. Gradle 2.6 Wrapper Bug³¹

[[KHenney1]] Kevlin Henney, The Programmer³²

[[KMathiesen1]] Knut Saua Mathiesen. Gist³³

¹⁷http://spockframework.github.io/spock/docs/1.0/index.html
¹⁸https://github.com/ysb33r/Gradle/tree/master/doxygen
¹⁹https://github.com/ysb33r/GradleTest/tree/master/
²⁰https://github.com/ysb33r/groovy-vfs/tree/master/gradle-plugin
²¹https://github.com/ysb33r/bintray
²²https://github.com/ysb33r/gnumake-gradle-plugin
²³https://github.com/griffon/griffon/blob/griffon-2.4.0/build.gradle#L85
²⁴https://docs.gradle.org/2.0/userguide/custom_plugins.html
²⁵https://docs.gradle.org/2.9/release-notes#improvements-to-the-incubating-model-infrastructure
²⁶https://docs.gradle.org/2.10/release-notes#dsl-improvements-for-the-software-model
²⁷https://docs.gradle.org/2.11/release-notes#better-support-for-developing-plugins-with-the-software-model
²⁸https://docs.gradle.org/2.12/release-notes#experimental-software-model-improvements
²⁹https://docs.gradle.org/2.0/userguide/gradle_wrapper.html
³⁰https://docs.gradle.org/2.7/userguide/test_kit.html
³¹https://docs.gradle.org/2.7/release-notes#important:-performance-regression-with-any-wrapper-generated-by-gradle-2.6
³²http://www.slideshare.net/Kevlin/the-programmer
³³https://gist.github.com/ksaua/74d75901458235f48da1

http://spockframework.github.io/spock/docs/1.0/index.html
https://github.com/ysb33r/Gradle/tree/master/doxygen
https://github.com/ysb33r/GradleTest/tree/master/
https://github.com/ysb33r/groovy-vfs/tree/master/gradle-plugin
https://github.com/ysb33r/bintray
https://github.com/ysb33r/gnumake-gradle-plugin
https://github.com/griffon/griffon/blob/griffon-2.4.0/build.gradle#L85
https://docs.gradle.org/2.0/userguide/custom_plugins.html
https://docs.gradle.org/2.9/release-notes#improvements-to-the-incubating-model-infrastructure
https://docs.gradle.org/2.9/release-notes#improvements-to-the-incubating-model-infrastructure
https://docs.gradle.org/2.10/release-notes#dsl-improvements-for-the-software-model
https://docs.gradle.org/2.10/release-notes#dsl-improvements-for-the-software-model
https://docs.gradle.org/2.11/release-notes#better-support-for-developing-plugins-with-the-software-model
https://docs.gradle.org/2.11/release-notes#better-support-for-developing-plugins-with-the-software-model
https://docs.gradle.org/2.12/release-notes#experimental-software-model-improvements
https://docs.gradle.org/2.12/release-notes#experimental-software-model-improvements
https://docs.gradle.org/2.0/userguide/gradle_wrapper.html
https://docs.gradle.org/2.7/userguide/test_kit.html
https://docs.gradle.org/2.7/release-notes#important:-performance-regression-with-any-wrapper-generated-by-gradle-2.6
http://www.slideshare.net/Kevlin/the-programmer
https://gist.github.com/ksaua/74d75901458235f48da1
http://spockframework.github.io/spock/docs/1.0/index.html
https://github.com/ysb33r/Gradle/tree/master/doxygen
https://github.com/ysb33r/GradleTest/tree/master/
https://github.com/ysb33r/groovy-vfs/tree/master/gradle-plugin
https://github.com/ysb33r/bintray
https://github.com/ysb33r/gnumake-gradle-plugin
https://github.com/griffon/griffon/blob/griffon-2.4.0/build.gradle#L85
https://docs.gradle.org/2.0/userguide/custom_plugins.html
https://docs.gradle.org/2.9/release-notes#improvements-to-the-incubating-model-infrastructure
https://docs.gradle.org/2.10/release-notes#dsl-improvements-for-the-software-model
https://docs.gradle.org/2.11/release-notes#better-support-for-developing-plugins-with-the-software-model
https://docs.gradle.org/2.12/release-notes#experimental-software-model-improvements
https://docs.gradle.org/2.0/userguide/gradle_wrapper.html
https://docs.gradle.org/2.7/userguide/test_kit.html
https://docs.gradle.org/2.7/release-notes#important:-performance-regression-with-any-wrapper-generated-by-gradle-2.6
http://www.slideshare.net/Kevlin/the-programmer
https://gist.github.com/ksaua/74d75901458235f48da1

Bibliography 34

[[BMuschko1]] Benjamin Muschko. Gradle Plugin Best Practices by Example³⁴

[[ELezmy]] Eyal Lezmy. Gradle Plugin. Take control of the build³⁵. Presentation at Devoxx Belgium
12 November 2015.

³⁴https://speakerdeck.com/bmuschko/gradle-plugin-best-practices-by-example
³⁵http://bit.ly/gradle-plugin

https://speakerdeck.com/bmuschko/gradle-plugin-best-practices-by-example
http://bit.ly/gradle-plugin
https://speakerdeck.com/bmuschko/gradle-plugin-best-practices-by-example
http://bit.ly/gradle-plugin

	Table of Contents
	Avoiding Groovy Version Mismatch
	Collection of Files
	Collection of Strings
	Property Maps
	Allow user to override specific version of underlying in-process library
	Add SourceSet Support for JVM Language
	Create Safe Filenames From Inputs
	Self-referencing plugin
	Bibliography

