

Go, The Standard Library
Real Code. Real Productivity. Master The Go Standard
Library

Daniel Huckstep

This book is for sale at http://leanpub.com/go-thestdlib

This version was published on 2020-06-28

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean
Publishing process. Lean Publishing is the act of publishing an in-progress ebook
using lightweight tools and many iterations to get reader feedback, pivot until you
have the right book and build traction once you do.

© 2012 - 2020 Daniel Huckstep

http://leanpub.com/go-thestdlib
http://leanpub.com/
http://leanpub.com/manifesto

Tweet This Book!
Please help Daniel Huckstep by spreading the word about this book on Twitter!

The suggested hashtag for this book is #GoTheStdLib.

Find out what other people are saying about the book by clicking on this link to
search for this hashtag on Twitter:

#GoTheStdLib

http://twitter.com
https://twitter.com/search?q=%23GoTheStdLib
https://twitter.com/search?q=%23GoTheStdLib

Contents

Introduction . 1
Target Audience . 1
How To Read This Book . 2
Code In The Book . 2

Thanks . 5

archive . 6
Meet The Archive Package . 6
Writing tar Files . 6
Writing zip Files . 9
Reading tar Files . 12
Reading zip Files . 15
Caveats . 16

builtin . 18
Batteries Included . 18
Building Objects . 18
Maps, Slices, And Channels . 20
All The Sizes . 24
Causing And Handling Panics . 26
Complex Numbers . 28

expvar . 29

Introduction
When I sit down to build a new piece of software in my favorite programming
language of the week, I open up my programmer’s toolbox. I can pull out a number
of things, like my knowledge of the language syntax and its quirks. It probably has
some sort of library packaging system (rubygems1 or python eggs2), and I have my
list of libraries for doing certain jobs. The language also has a standard library. All
of these tools combine to help solve difficult programming problems.

Right now, my programming language of choice is Go3 and it has a wonderful
standard library. That standard library is what this book is about.

I wanted to take an in depth look at something which normally doesn’t get a lot of
press, and many developers overlook. The standard library usually has a number
of great solutions to problems that you might be using some other dependency for,
simply because you don’t know about them. It makes no sense for my application to
depend on an external library or program if the standard distribution of the language
has something built in.4

Learning the ins andouts of your favorite programming language’s standard library
can help make you a better programmer, and streamline your applications by
removing dependencies. If this sounds like something you’re interested in, keep
reading.

Target Audience

This book is for people that know how to program Go already. It’s definitely not an
intro. If you’re completely new to Go, start with the documentation page5 and the
reference page6. The language specification is quite readable and if you’re already
familiar with other programming languages you can probably absorb the language
from the spec.

If you know Go but want to step up your game and your usage of the standard
library, this book is for you.

1http://rubygems.org/
2http://pypi.python.org/pypi/
3http://golang.org/
4Not to mention, the library you are using might only work on one operating system, while the standard library

should work everywhere the language works.
5http://golang.org/doc/
6http://golang.org/ref/

http://rubygems.org/
http://pypi.python.org/pypi/
http://golang.org/
http://golang.org/doc/
http://golang.org/ref/
http://golang.org/ref/
http://rubygems.org/
http://pypi.python.org/pypi/
http://golang.org/
http://golang.org/doc/
http://golang.org/ref/

Introduction 2

How To Read This Book

My goal for this book is a readable reference. I do want you to read it, but I also
want you to be able to pull it off the electronic shelf and remind yourself of how
to do something, like writing a zip file. It’s not meant to be a replacement for the
package reference7 which is very useful to remember the details about a specific
method/function/type/interface.

So feel free to read from cover to cover, and in fact I recommend this approach.
If you see something that doesn’t quite work reading it this way, let me know.
Alternatively, try reading individual chapters when you start to deal with a given
package to get a feel for it, and come back to skim to refresh your memory.

Code In The Book

All the code listed in the book is available for download from Leanpub as an extra.
Visit your dashboard8 for access to the archives.

Anything with a main package should be able to be executed with go run by Go
Version 1.2. If it’s not, please let me know, with as much error information as
possible.

Some codemay depend on output frompreviously shown code in the same chapter.
For example, the tar archive reading code reads the tar created in the writing code.

Frequently I’ll use other packages to make my life easier when writing example
code. Don’t worry toomuch about it. If you’re confused about some use of a package
you’re not familiar with yet, either try to ignore the details and trust that I’ll explain
it later, or jump ahead and choose your own adventure!

License

Code distributed as part of this book, either inline or with the above linked archive,
is licensed under the MIT license:

7http://golang.org/pkg/
8https://leanpub.com/dashboard

http://golang.org/pkg/
http://golang.org/pkg/
https://leanpub.com/dashboard
http://golang.org/pkg/
https://leanpub.com/dashboard

Introduction 3

LICENSE

1 Copyright (c) 2014 Daniel Huckstep

2

3 Permission is hereby granted, free of charge, to any person obtaining a copy of this\

4 software and associated documentation files (the "Software"), to deal in the Softwa\

5 re without restriction, including without limitation the rights to use, copy, modify\

6 , merge, publish, distribute, sublicense, and/or sell copies of the Software, and to\

7 permit persons to whom the Software is furnished to do so, subject to the following\

8 conditions:

9

10 The above copyright notice and this permission notice shall be included in all copie\

11 s or substantial portions of the Software.

12

13 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, \

14 INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTIC\

15 ULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS\

16 BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRA\

17 CT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR TH\

18 E USE OR OTHER DEALINGS IN THE SOFTWARE.

Some code is taken directly from the Go source distribution. This code is licensed
under a BSD-style license by The Go Authors:

GOLICENSE

1 Copyright (c) 2012 The Go Authors. All rights reserved.

2

3 Redistribution and use in source and binary forms, with or without

4 modification, are permitted provided that the following conditions are

5 met:

6

7 * Redistributions of source code must retain the above copyright

8 notice, this list of conditions and the following disclaimer.

9 * Redistributions in binary form must reproduce the above

10 copyright notice, this list of conditions and the following disclaimer

11 in the documentation and/or other materials provided with the

12 distribution.

13 * Neither the name of Google Inc. nor the names of its

14 contributors may be used to endorse or promote products derived from

15 this software without specific prior written permission.

16

17 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS

18 "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT

Introduction 4

19 LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR

20 A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT

21 OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,

22 SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT

23 LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,

24 DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY

25 THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT

26 (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE

27 OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Thanks
Thanks for buying and checking out this book. As part of the lean publishing
philosophy, you’ll be able to interact with me as the book is completed. I’ll be able
to change things, reorganize parts, and generally make a better book. I hope you
enjoy.

A big thanks goes out to all thosewhoprovided feedback during thewriting process:

• Brad Fitzpatrick
• Mikhail Strebkov
• Kim Shrier

archive

Meet The Archive Package

The archive package is used to read and write files in tar and zip format. Both
formats pack multiple files into one big file, the main difference being that zip
files support optional compression using the DEFLATE algorithm provided by the
compress/flate package.

Writing tar Files

Writing a tar file starts with NewWriter. It takes an io.Writer type, which is just
something that has a method that looks like Write([]byte) (int, error). This is nice
if you want to generate a tar file on the fly and write it out to an HTTP response,
or feed it through another writer like a gzip writer. You’ll see this just give me an
io.Writer pattern a lot in the Go stdlib. In our case, I’m just going to write the archive
out to a file.

Make sure to close the writer you pass in after you close the tar writer.
It writes 2 zero blocks to finish up the file, but ignores any errors during this
process. This trailer isn’t strictly required, but it’s good to have. If you use
defer in the natural order, you should be okay.

To add files to the new tar writer, use WriteHeader. It needs a Header with all the
information about this entry in the archive, including its name, size, permissions,
user and group information, and all the other bits that get set when the tar file gets
unpacked. Straight from the Go documentation, the Header type looks like this:

archive 7

archive/tar_header.go

1 type Header struct {

2 Name string // name of header file entry

3 Mode int64 // permission and mode bits

4 Uid int // user id of owner

5 Gid int // group id of owner

6 Size int64 // length in bytes

7 ModTime time.Time // modified time

8 Typeflag byte // type of header entry

9 Linkname string // target name of link

10 Uname string // user name of owner

11 Gname string // group name of owner

12 Devmajor int64 // major number of character or block device

13 Devminor int64 // minor number of character or block device

14 AccessTime time.Time // access time

15 ChangeTime time.Time // status change time

16 }

Some fields aren’t really required if you’re doing something quick and dirty, and
some only apply to certain types of entries (controlled by the Typeflag field). For
example, if you’re packaging a regular file, you don’t need to worry about Devmajor
and Devminor.

I found that on top of the obvious Name and Size fields, I had to set the ModTime

on the Header. GNU tar would unpack the file fine, but running the read script
would throw the standard “archive/tar: invalid tar header” error back atme.

Let’s see it all together:

archive/write_tar.go

1 package main

2

3 import (

4 "archive/tar"

5 "fmt"

6 "io"

7 "log"

8 "os"

9)

10

11 var files = []string{"write_tar.go", "read_tar.go"}

archive 8

12

13 func addFile(filename string, tw *tar.Writer) error {

14 file, err := os.Open(filename)

15 if err != nil {

16 return fmt.Errorf("failed opening %s: %s", filename, err)

17 }

18 defer file.Close()

19

20 stat, err := file.Stat()

21 if err != nil {

22 return fmt.Errorf("failed file stat for %s: %s", filename, err)

23 }

24

25 hdr := &tar.Header{

26 ModTime: stat.ModTime(),

27 Name: filename,

28 Size: stat.Size(),

29 Mode: int64(stat.Mode().Perm()),

30 }

31

32 if err := tw.WriteHeader(hdr); err != nil {

33 msg := "failed writing tar header for %s: %s"

34 return fmt.Errorf(msg, filename, err)

35 }

36

37 copied, err := io.Copy(tw, file)

38 if err != nil {

39 return fmt.Errorf("failed writing %s to tar: %s", filename, err)

40 }

41

42 // Check copied, since we have the file stat with its size

43 if copied < stat.Size() {

44 msg := "wrote %d bytes of %s, expected to write %d"

45 return fmt.Errorf(msg, copied, filename, stat.Size())

46 }

47

48 return nil

49 }

50

51 func main() {

52 flags := os.O_WRONLY | os.O_CREATE | os.O_TRUNC

53 file, err := os.OpenFile("go.tar", flags, 0644)

54 if err != nil {

archive 9

55 log.Fatalf("failed opening tar for writing: %s", err)

56 }

57 defer file.Close()

58

59 tw := tar.NewWriter(file)

60 defer tw.Close()

61

62 for _, filename := range files {

63 if err := addFile(filename, tw); err != nil {

64 log.Fatalf("failed adding file %s to tar: %s", filename, err)

65 }

66 }

67 }

Remember to Close the tar writer first, followed by the original io.Writer. In the
example, I defer the calls to Close. Because defer executes in a LIFOa order, this is
exactly the order things get closed in. defer usually results in you not having to think
too hard in these situations, just use defer the way it should be used, and everything
should be fine.

aLast In First Out

Writing zip Files

Writing a zip file is similar towriting a tar file. There’s a NewWriter function that takes
an io.Writer, so let’s use that.

The zip package has a handy helper to let you quickly write a file to the archive
withoutmuch cermony.We can use the Create(name string)method on the zip writer
we got back from NewWriter to add an entry to the zip; no header information needed.
There is a Header type, which looks like this:

archive 10

archive/zip_header.go

1 type FileHeader struct {

2 Name string

3 CreatorVersion uint16

4 ReaderVersion uint16

5 Flags uint16

6 Method uint16

7 ModifiedTime uint16 // MS-DOS time

8 ModifiedDate uint16 // MS-DOS date

9 CRC32 uint32

10 CompressedSize uint32 // deprecated; use CompressedSize64

11 UncompressedSize uint32 // deprecated; use UncompressedSize64

12 CompressedSize64 uint64

13 UncompressedSize64 uint64

14 Extra []byte

15 ExternalAttrs uint32 // Meaning depends on CreatorVersion

16 Comment string

17 }

You can use CreateHeader if you need to do something special, but Create creates a
basic header for us and gives us a writer back. We can now use this writer to write
the file into the zip archive.

Make sure to write the entire file before calling any of Create, CreateHeader, or Close.
You can only deal with one file at a time, and you certainly can’t deal with the zip
after you’ve closed it.

archive/write_zip.go

1 package main

2

3 import (

4 "archive/zip"

5 "fmt"

6 "io"

7 "log"

8 "os"

9)

10

11 var files = []string{"write_zip.go", "read_zip.go"}

12

13 func addFile(filename string, zw *zip.Writer) error {

14 file, err := os.Open(filename)

archive 11

15 if err != nil {

16 return fmt.Errorf("failed opening %s: %s", filename, err)

17 }

18 defer file.Close()

19

20 wr, err := zw.Create(filename)

21 if err != nil {

22 msg := "failed creating entry for %s in zip file: %s"

23 return fmt.Errorf(msg, filename, err)

24 }

25

26 // Not checking how many bytes copied,

27 // since we don't know the file size without doing more work

28 if _, err := io.Copy(wr, file); err != nil {

29 return fmt.Errorf("failed writing %s to zip: %s", filename, err)

30 }

31

32 return nil

33 }

34

35 func main() {

36 flags := os.O_WRONLY | os.O_CREATE | os.O_TRUNC

37 file, err := os.OpenFile("go.zip", flags, 0644)

38 if err != nil {

39 log.Fatalf("failed opening zip for writing: %s", err)

40 }

41 defer file.Close()

42

43 zw := zip.NewWriter(file)

44 defer zw.Close()

45

46 for _, filename := range files {

47 if err := addFile(filename, zw); err != nil {

48 log.Fatalf("failed adding file %s to zip: %s", filename, err)

49 }

50 }

51 }

As with tar files, remember to Close the original io.Writer and the zip writer (in that
order).

archive 12

Reading tar Files

Reading tar files is pretty straight forward. You use NewReader to get a handle to a
Reader type. Like NewWriter taking an io.Writer type, NewReader takes an io.Reader type,
in order to plug into other streams for reading tar files on the fly.

Once you have your Reader, you can iterate over the entries in the archive with the
Nextmethod. It returns a Header and possibly an error. Remember to check the error
since it’s used to signal the end of the archive (with io.EOF) and other problems.
Always check those errors!

You can read out an entry by calling Read on the reader you got back from NewReader,
or pass it to a utility function to read out the full contents of the entry. In the
example, I use io.ReadFull to read out the appropriate number of bytes into a slice,
and can then print that to stdout.

archive/read_tar.go

1 package main

2

3 import (

4 "archive/tar"

5 "fmt"

6 "io"

7 "log"

8 "os"

9 "text/template"

10)

11

12 var HeaderTemplate = `tar header

13 Name: {{.Name}}

14 Mode: {{.Mode | printf "%o" }}

15 UID: {{.Uid}}

16 GID: {{.Gid}}

17 Size: {{.Size}}

18 ModTime: {{.ModTime}}

19 Typeflag: {{.Typeflag | printf "%q" }}

20 Linkname: {{.Linkname}}

21 Uname: {{.Uname}}

22 Gname: {{.Gname}}

23 Devmajor: {{.Devmajor}}

24 Devminor: {{.Devminor}}

25 AccessTime: {{.AccessTime}}

26 ChangeTime: {{.ChangeTime}}

archive 13

27 `

28 var CompiledHeaderTemplate *template.Template

29

30 func init() {

31 t := template.New("header")

32 CompiledHeaderTemplate = template.Must(t.Parse(HeaderTemplate))

33 }

34

35 func printHeader(hdr *tar.Header) {

36 CompiledHeaderTemplate.Execute(os.Stdout, hdr)

37 }

38

39 func printContents(tr io.Reader, size int64) {

40 contents := make([]byte, size)

41 read, err := io.ReadFull(tr, contents)

42

43 if err != nil {

44 log.Fatalf("failed reading tar entry: %s", err)

45 }

46

47 if int64(read) != size {

48 log.Fatalf("read %d bytes but expected to read %d", read, size)

49 }

50

51 fmt.Fprintf(os.Stdout, "Contents:\n\n%s", contents)

52 }

53

54 func main() {

55 file, err := os.Open("go.tar")

56 if err != nil {

57 msg := "failed opening archive, run `go run write_tar.go` first: %s"

58 log.Fatalf(msg, err)

59 }

60

61 defer file.Close()

62

63 tr := tar.NewReader(file)

64 for {

65 hdr, err := tr.Next()

66 if err == io.EOF {

67 break

68 }

69

archive 14

70 if err != nil {

71 log.Fatalf("failed getting next tar entry: %s", err)

72 }

73

74 printHeader(hdr)

75 printContents(tr, hdr.Size)

76 }

77 }

Output:

1 tar header

2 Name: write_tar.go

3 Mode: 644

4 UID: 0

5 GID: 0

6 Size: 1441

7 ModTime: 2014-03-07 23:02:17 -0700 MST

8 Typeflag: '\x00'

9 Linkname:

10 Uname:

11 Gname:

12 Devmajor: 0

13 Devminor: 0

14 AccessTime: 0001-01-01 00:00:00 +0000 UTC

15 ChangeTime: 0001-01-01 00:00:00 +0000 UTC

16 Contents:

17

18 <snip contents of writer_tar.go>

19 tar header

20 Name: read_tar.go

21 Mode: 644

22 UID: 0

23 GID: 0

24 Size: 1484

25 ModTime: 2014-03-07 23:00:03 -0700 MST

26 Typeflag: '\x00'

27 Linkname:

28 Uname:

29 Gname:

30 Devmajor: 0

31 Devminor: 0

32 AccessTime: 0001-01-01 00:00:00 +0000 UTC

archive 15

33 ChangeTime: 0001-01-01 00:00:00 +0000 UTC

34 Contents:

35

36 <snip contents of read_tar.go>

Reading zip Files

Reading zip files is awalk in the park too. Start with OpenReader to get a zip.ReadCloser.
It has a collection of File structs you can iterate through, each one with size and
other information, and an Openmethod so you can get another ReadCloser to read out
that individual file. Simple!

archive/read_zip.go

1 package main

2

3 import (

4 "archive/zip"

5 "fmt"

6 "io"

7 "log"

8 "os"

9)

10

11 func printFile(file *zip.File) error {

12 frc, err := file.Open()

13 if err != nil {

14 msg := "failed opening zip entry %s for reading: %s"

15 return fmt.Errorf(msg, file.Name, err)

16 }

17 defer frc.Close()

18

19 fmt.Fprintf(os.Stdout, "Contents of %s:\n", file.Name)

20

21 copied, err := io.Copy(os.Stdout, frc)

22 if err != nil {

23 msg := "failed reading zip entry %s for reading: %s"

24 return fmt.Errorf(msg, file.Name, err)

25 }

26

27 if uint64(copied) != file.UncompressedSize64 {

archive 16

28 msg := "read %d bytes of %s but expected to read %d bytes"

29 return fmt.Errorf(msg, copied, file.UncompressedSize64)

30 }

31

32 fmt.Println()

33

34 return nil

35 }

36

37 func main() {

38 rc, err := zip.OpenReader("go.zip")

39 if err != nil {

40 msg := "failed opening archive, run `go run write_zip.go` first: %s"

41 log.Fatalf(msg, err)

42 }

43 defer rc.Close()

44

45 for _, file := range rc.File {

46 if err := printFile(file); err != nil {

47 log.Fatalf("failed reading %s from zip: %s", file.Name, err)

48 }

49 }

50 }

Output:

1 Contents of write_zip.go:

2 <snip contents of write_zip.go>

3

4 Contents of read_zip.go:

5 <snip contents of read_zip.go>

Remember to Close the first ReadCloser you get from OpenReader, as well as all the other
ones you get while reading files.

Caveats

ZIP64

You may have noticed the FileHeader has two pairs of numbers for the size of a
file in the archive. The CompressedSize and UncompressedSize are uint32 values. These

archive 17

are deprecated, but in the interest of backwards compatibility will still work for
regular zip files. If you’re working with ZIP64 files, you need to use the newer
CompressedSize64 and UncompressedSize64 uint64 values. These will be correct for all
files, so they are the preferred values to use.

builtin

Batteries Included

The builtin package isn’t a real package, it’s just here to document the builtin
functions that comewith the language. Lower level than the standard library, these
things are just…there. The builtins let you do things with maps, slices, channels,
and imaginary numbers, cause and deal with panics, build objects, and get size
information about certain things. Honestly, most of this can be learned from the
spec, but I’ve included it for completeness.

Building Objects

make

make is used to build the builtin types like slices, channels and maps. The first
argument is the type, and it can be one of those three types.

In the case of channels, there is an optional second integer parameter, the capacity.
If it’s zero (or not given), the channel is unbuffered. This means writes block until
there is a reader ready to receive the data, and reads block until there is a write
ready to give data. If the parameter is greater than zero, the channel is buffered
with the capacity specified. On these channels, reads block only when the channel
is empty, and writes block only when the channel is full.

In the case of maps, the second parameter is also optional, but is rarely used. It
controls the initial allocation, so if you know exactly how big your map has to be,
it can be helpful. cap (which we’ll see later) doesn’t work on maps though, so you
can’t really examine the effects of this second parameter easily.

In the case of slices, the second parameter is not optional, and specifies the starting
length of the slice. Oh but the plot thickens! There is an optional third parameter,
which controls the starting capacity, and it can’t be smaller than the length.9 This
way, you can get really specific with your slice allocation and save subsequent
reallocations if you know exactly how much space you need it to take up.

9If you specify a length greater than the capacity, you’ll get a runtime panic.

builtin 19

builtin/make.go

1 package main

2

3 import "log"

4

5 func main() {

6 unbuffered := make(chan int)

7 log.Printf("unbuffered: %v, type: %T, len: %d, cap: %d", unbuffered, unbuffered, le\

8 n(unbuffered), cap(unbuffered))

9

10 buffered := make(chan int, 10)

11 log.Printf("buffered: %v, type: %T, len: %d, cap: %d", buffered, buffered, len(buff\

12 ered), cap(buffered))

13

14 m := make(map[string]int)

15 log.Printf("m: %v, len: %d", m, len(m))

16

17 // Would cause a compile error

18 // slice := make([]byte)

19

20 slice := make([]byte, 5)

21 log.Printf("slice: %v, len: %d, cap: %d", slice, len(slice), cap(slice))

22

23 slice2 := make([]byte, 0, 10)

24 log.Printf("slice: %v, len: %d, cap: %d", slice2, len(slice2), cap(slice2))

25 }

new

The new function allocates a new object of the type provided, and returns a pointer
to the new object. The object is allocated to be the zero value for the given type. It’s
not something you use terribly often, but it can be useful. If you’re making a new
struct, you probably want to use the composite literal syntax instead.

builtin 20

builtin/new.go

1 package main

2

3 import "log"

4

5 type Actor struct {

6 Name string

7 }

8

9 type Movie struct {

10 Title string

11 Actors []*Actor

12 }

13

14 func main() {

15 ip := new(int)

16 log.Printf("ip type: %T, ip: %v, *ip: %v", ip, ip, *ip)

17

18 m := new(Movie)

19 log.Printf("m type: %T, m: %v, *m: %v", m, m, *m)

20 }

Maps, Slices, And Channels

You’ve got slices, maps and channels as some of the fundamental types that Go
provides. The functions delete, close, append, and copy all deal with these types to
do basic operations.

delete

delete removes elements from a map. If the key doesn’t exist in the map, nothing
happens, nothing to worry about. If the map itself is nil it still works, just nothing
happens.

builtin 21

builtin/delete.go

1 package main

2

3 import "log"

4

5 func main() {

6 m := make(map[string]int)

7 log.Println(m)

8

9 m["one"] = 1

10 log.Println(m)

11

12 m["two"] = 2

13 log.Println(m)

14

15 delete(m, "one")

16 log.Println(m)

17

18 delete(m, "one")

19 log.Println(m)

20

21 m = nil

22 delete(m, "two")

23 }

close

close takes a writable channel and closes it. When I say writable, I mean either a
normal channel like var normal chan int or a write only channel like var writeOnly

chan<- int. You can still receive from a closed channel, but you’ll get the zero value
of whatever the type is. If you want to check that you actually got a value and not
the zero value, use the comma ok pattern. Closing an already closed channel will
panic, so watch those double closes.

builtin 22

builtin/close.go

1 package main

2

3 import "log"

4

5 func main() {

6 c := make(chan int, 1)

7 c <- 1

8

9 log.Println(<-c) // Prints 1

10

11 c <- 2

12 close(c)

13

14 log.Println(<-c) // Prints 2

15 log.Println(<-c) // Prints 0

16

17 if i, ok := <-c; ok {

18 log.Printf("Channel is open, got %d", i)

19 } else {

20 log.Printf("Channel is closed, got %d", i)

21 }

22

23 close(c) // Panics, channel is already closed

24 }

append

append tacks on elements to the end of a slice, exactly like it sounds. You need to keep
the return value around, since it’s the new slice with the extra data. It could return
the same slice if it has space for the data, but it might return something new if it
needed to allocatemorememory. It takes a variable number of arguments, so if you
want to append an existing array, use ... to expand the array.

The idiomatic way to append to a slice is to assign the result to the same slice you’re
appending to. It’s probably what you want.

builtin 23

builtin/append.go

1 package main

2

3 import "log"

4

5 func main() {

6 // Empty slice, with capacity of 10

7 ints := make([]int, 0, 10)

8 log.Printf("ints: %v", ints)

9

10 ints2 := append(ints, 1, 2, 3)

11

12 log.Printf("ints2: %v", ints2)

13 log.Printf("Slice was at %p, it's probably still at %p", ints, ints2)

14

15 moreInts := []int{4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14}

16 ints3 := append(ints2, moreInts...)

17

18 log.Printf("ints3: %v", ints3)

19 log.Printf("Slice was at %p, and it moved to %p", ints2, ints3)

20

21 ints4 := []int{1, 2, 3}

22 log.Printf("ints4: %v", ints4)

23 // The idiomatic way to append to a slice,

24 // just assign to the same variable again

25 ints4 = append(ints4, 4, 5, 6)

26 log.Printf("ints4: %v", ints4)

27 }

copy

copy copies from one slice to another. It will also copy from a string, treating it as
a slice of bytes. It returns the number of bytes copied, which is the shorter of the
lengths of the two slices.

builtin 24

builtin/copy.go

1 package main

2

3 import "log"

4

5 func main() {

6 ints := []int{1, 2, 3, 4, 5, 6}

7 otherInts := []int{11, 12, 13, 14, 15, 16}

8

9 log.Printf("ints: %v", ints)

10 log.Printf("otherInts: %v", otherInts)

11

12 copied := copy(ints[:3], otherInts)

13 log.Printf("Copied %d ints from otherInts to ints", copied)

14

15 log.Printf("ints: %v", ints)

16 log.Printf("otherInts: %v", otherInts)

17

18 hello := "Hello, World!"

19 bytes := make([]byte, len(hello))

20

21 copy(bytes, hello)

22

23 log.Printf("bytes: %v", bytes)

24 log.Printf("hello: %s", hello)

25 }

All The Sizes

A lot of things have lengths and capacities. With len and cap, you can find out about
these values.

len

len tells you the actual length or size of something. In the case of slices, you get, well,
the length. In the case of strings, you get the number of bytes. Formaps, you get how
many pairs are in the map. For channels, you get how many elements the channel
has buffered (only relevant for buffered channels).

builtin 25

You can also call lenwith a pointer, but only a pointer to an array. It’s the equivalent
of calling it on the dereferenced pointer. But, since it still has a type, it’s an array
and not a slice, and the type of an array includes the size, so it still works. The length
is part of the type.

builtin/len.go

1 package main

2

3 import "log"

4

5 func main() {

6 slice := make([]byte, 10)

7 log.Printf("slice: %d", len(slice))

8

9 str := "γειά σου κόσμε"

10 log.Printf("string: %d", len(str))

11

12 m := make(map[string]int)

13 m["hello"] = 1

14 log.Printf("map: %d", len(m))

15

16 channel := make(chan int, 5)

17 log.Printf("channel: %d", len(channel))

18 channel <- 1

19 log.Printf("channel: %d", len(channel))

20

21 var pointer *[5]byte

22 log.Printf("pointer: %d", len(pointer))

23 }

cap

cap tells you the capacity of something. It’s similar to len, except it doesn’t work on
maps or strings. With arrays, it’s the same as using len.

With slices, it returns the max size the slice can grow to when you append to it
before things are copied to a new backing array. This is why you have to save the
return value of append. If cap returns 5 and you append 6 things to your slice, it’s
going to return you a slice backed by a new array.

With channels, it returns the buffer capacity.

builtin 26

builtin/cap.go

1 package main

2

3 import "log"

4

5 func main() {

6 slice := make([]byte, 0, 5)

7 log.Printf("slice: %d", cap(slice))

8

9 channel := make(chan int, 10)

10 log.Printf("channel: %d", cap(channel))

11

12 var pointer *[15]byte

13 log.Printf("pointer: %d == %d", cap(pointer), len(pointer))

14 }

Causing And Handling Panics

panic and recover are typically used to deal with errors. These are errors where re-
turning an error in the comma err style don’t make sense. Things like programmer
error or things that are seriously broken. Usually.

If bad things are afoot, you can use panic to throw an error. You can pass it pretty
much any object, which gets carried up the stack. Deferred functions get executed,
and up the error goes. It works sort of like raise or throw in other languages.

You can use recover to, as the name says, recover from a panic. recover must be
excuted from within a deferred function, and not from within a function the
deferred function calls. It returns whatever panic was called with, you check for
nil and can then type cast it to something.

There are some creative uses10 for panic/recover beyond error handling, but
they should be confined to your own package. In Go, it’s not nice to let a panic
go outside your own little world. Better to handle the panic yourself in a way
you know how, and return an appropriate error. In some cases, the panic
makes sense. Err on the side of returning instead of panicking.

The example illustrates things much better.

10See the code for the encoding/json package on one of them.

builtin 27

builtin/panic_recover.go

1 package main

2

3 import (

4 "errors"

5 "log"

6)

7

8 func handlePanic(f func()) {

9 defer func() {

10 if r := recover(); r != nil {

11 if str, ok := r.(string); ok {

12 log.Printf("got a string error: %s", str)

13 return

14 }

15

16 if err, ok := r.(error); ok {

17 log.Printf("got an error error: %s", err.Error())

18 return

19 }

20

21 log.Printf("got a different kind of error: %v", r)

22 }

23 }()

24 f()

25 }

26

27 func main() {

28 handlePanic(func() {

29 panic("string error")

30 })

31

32 handlePanic(func() {

33 panic(errors.New("error error"))

34 })

35

36 handlePanic(func() {

37 panic(10)

38 })

39 }

builtin 28

Complex Numbers

Go supports complex numbers as a builtin type. You can define them with literal
syntax, or by using the builtin function complex. If you want to build a complex
number from existing float values, you need to use the builtin function, and the
two arguments have to be of the same type (float32 or float64) and will produce
a complex type double the size (complex64 or complex128). Once you have a complex
number, you can add, subtract, divide, and multiply values normally.

If you have a complex number and want to break it into the real and imaginary
parts, use the functions real and imag.

builtin/complex.go

1 package main

2

3 import "log"

4

5 func main() {

6 c1 := 1.5 + 0.5i

7 c2 := complex(1.5, 0.5)

8 log.Printf("c1: %v", c1)

9 log.Printf("c2: %v", c2)

10 log.Printf("c1 == c2: %v", c1 == c2)

11 log.Printf("c1 real: %v", real(c1))

12 log.Printf("c1 imag: %v", imag(c1))

13 log.Printf("c1 + c2: %v", c1+c2)

14 log.Printf("c1 - c2: %v", c1-c2)

15 log.Printf("c1 * c2: %v", c1*c2)

16 log.Printf("c1 / c2: %v", c1/c2)

17 log.Printf("c1 type: %T", c1)

18

19 c3 := complex(float32(1.5), float32(0.5))

20 log.Printf("c3 type: %T", c3)

21 }

expvar
The expvar package is global variables done right.

It has helpers for Float, Int, Map, and String types,which are setup to be atomic. Things
are registered by a string name, the Key, and theymap to a corresponding Var, which
is just an interface with a single method: String() string.

This simple interface allows you to use the more raw Publish method to register
more custom handlers in the form of a Func type. These are just functions which
takeno arguments and return an empty interface (which, in implementation should
probably be a string).

Examining the source for the package, you can see it uses this to register the
memstats variable. When you iterate through the variables and you call the String

method on the Var, the function runs to extract thememstats at thatmoment in time.

It’s a pretty simple, but very powerful package. You can use it for metric type stuff,
or you can use it as a more traditional global variable system. It can do it all.

expvar/expvar.go

1 package main

2

3 import (

4 "expvar"

5 "flag"

6 "log"

7 "time"

8)

9

10 var (

11 times = flag.Int("times", 1, "times to say hello")

12 name = flag.String("name", "World", "thing to say hello to")

13 helloTimes = expvar.NewInt("hello")

14)

15

16 func init() {

17 expvar.Publish("time", expvar.Func(now))

18 }

19

20 func now() interface{} {

expvar 30

21 return time.Now().Format(time.RFC3339Nano)

22 }

23

24 func hello(times int, name string) {

25 helloTimes.Add(int64(times))

26 for i := 0; i < times; i++ {

27 log.Printf("Hello, %s!", name)

28 }

29 }

30

31 func printVars() {

32 log.Println("expvars:")

33 expvar.Do(func(kv expvar.KeyValue) {

34 switch kv.Key {

35 case "memstats":

36 // Do nothing, this is a big output.

37 default:

38 log.Printf("\t%s -> %s", kv.Key, kv.Value)

39 }

40 })

41 }

42

43 func main() {

44 flag.Parse()

45 printVars()

46 hello(*times, *name)

47 printVars()

48 hello(*times, *name)

49 printVars()

50 }

	Table of Contents
	Introduction
	Target Audience
	How To Read This Book
	Code In The Book

	Thanks
	archive
	Meet The Archive Package
	Writing tar Files
	Writing zip Files
	Reading tar Files
	Reading zip Files
	Caveats

	builtin
	Batteries Included
	Building Objects
	Maps, Slices, And Channels
	All The Sizes
	Causing And Handling Panics
	Complex Numbers

	expvar

