


Git Workbook
Self-Study Guide to Git

Lorna Mitchell

This book is for sale at http://leanpub.com/gitworkbook

This version was published on 2018-01-15

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean
Publishing process. Lean Publishing is the act of publishing an in-progress ebook
using lightweight tools and many iterations to get reader feedback, pivot until you
have the right book and build traction once you do.

© 2014 - 2018 Lorna Mitchell

http://leanpub.com/gitworkbook
http://leanpub.com/
http://leanpub.com/manifesto


Tweet This Book!
Please help Lorna Mitchell by spreading the word about this book on Twitter!

The suggested hashtag for this book is #gitworkbook.

Find out what other people are saying about the book by clicking on this link to
search for this hashtag on Twitter:

#gitworkbook

http://twitter.com
https://twitter.com/search?q=%23gitworkbook
https://twitter.com/search?q=%23gitworkbook


Also By Lorna Mitchell
N Ways To Be A Better Developer

Zend Certification Preparation Pack

http://leanpub.com/u/lornajane
http://leanpub.com/nways
http://leanpub.com/zce


Contents

About This Workbook 1

Make A Repository 2

Handle Interruptions with Git Stash 3

Rewrite History With Rebase Interactive 5



About This Workbook
This workbook is designed to equip you with the skills you need to use the Git source
control tool. It assumes absolutely no pre-requisite knowledge at all. To get the best
out of this book you will need:

• an attitude for participation
• a GitHub.com account (sign up if you don’t have one, it’s free)
• some time. Little stolen moments of time is fine, this is all about the small
pieces

There is no easy way to pick up new skills, and git is no exception (and also there’s
a lot of git skills!). In recognition of that, this workbook encapsulates everything you
will need for all the various areas, by explaining it, showing you, and then asking
you to try it yourself. There are some puzzles and quizzes along with the exercises -
these are there to hack your brain into remembering this stuff! It’s tempting to skip
through or imagine what you would write, but please embrace the experience and
work through all the exercises and puzzles, I promise it will help to make everything
end up in your brain.

There are some supporting materials in git repositories on GitHub: you can find all of
them under the Git Workbook organisation here: https://github.com/gitworkbook1.

If you have an comments or questions, then Iwould love to hear them: lorna@lornajane.net.
Have fun!

Each section has a box for you to tick so you can track your progress.

I have read the introduction and am ready to begin with git

1https://github.com/gitworkbook

1

https://github.com/gitworkbook
https://github.com/gitworkbook


Make A Repository
Git is a distributed version control system, which means that you do your local work
on an actual repository, and there are other remotes which are also repositories in
exactly the same way. We’ll start by making a standalone repository and then we’ll
discuss how to link it to other repositories or “repos” as they are known.

The command to create a repo is git init [dir]. If you run git init on its own,
your new repo will be in the current directory. If you run git init myproject then
you’ll get a new directory called myproject with a git repo inside it. You can check
if a directory is a git repo by running git status (if it says “not a git repository”,
check you changed into the directory you created the repository in) or by checking
that there is a hidden .git/ directory inside there.

Assignment

1) Create a new git repository in the directory project1.

2) Check that this directory exists and is a git repository

I now have a repository to use for the next examples

2



Handle Interruptions with Git
Stash
Do you ever get interrupted at work? Me too!

When something comes up and you are right in the middle of a task, you have two
options, neither of them are good. You can either commit half a thought, creating
a strange, unfinished story, or you can try to fix another thing with a half-chewed
changeset in your working area. Actually the third option is to throw away all your
changes so you have a clean repo, but let’s stay away from that one.

Enter the stash command, which lets you safely put your work aside for a moment
while you deal with something else. In particular it’s useful when you can’t
switch branches because you have something in your working area that would be
overwritten by a change in the other branch.

You can stash multiple stashes, they are stored in a stack so by default you’ll always
get the most recent thing you stashed - but you can also manipulate that list. Run
git help stash for more instructions.

Final note: it’s possible to lose work from your stash, so unless you really are putting
it aside for just a few minutes, I’d recommend creating a branch and committing
instead - you can make your history logical again later (see the section on interactive
rebasing).

Assignment

This is a pretty simple feature so the easiest way to show you is to let you have a go.

1) Make a change to whatever branch you are on, but don’t commit it.
Instead type git stash

2) Run git status and marvel at the absence of the work you just did

3



Handle Interruptions with Git Stash 4

3) Make more changes and type git stash again

4) Look at the stashes by running git stash list

5) Apply the newest one by running git stash apply, then run git

status and then git stash list again. What happened?

I can safely put my work aside for a moment, and still get it back



Rewrite History With Rebase
Interactive
Another use of the rebase command is to quite literally rewrite history - the history
of your branch.

Before we go any further, there are some caveats. It is not recommended to rewrite
shared history; this means that you don’t rebase commits that you have already
pushed2, or that instead you should create a new branch name as we did when we
transplated a branch with the rebase command in the previous section.

Now I’ve got the warnings out of the way, let’s get on. This feature is called
“interactive rebasing” and it allows you to take a range of recent commits, and change
them in any way you like. Your choices are:

Action Outcome

pick keep the commit (this is the default)
reword get the chance to change the commit message
edit edit the commit
fixup combine these changes into the previous commit. Useful for

the “fixed the bug”, followed by “no really fixed it this time”
situations

squash still combines commits but prompts you with an editor with
all the commit messages present in order for you to make
the correct commit

remove to pretend a commit never happened: simply delete the line
for it

Pretty powerful stuff. One thing that always confuses me is that the order of the
commits is in the order that they happened, with the oldest first. Which is exactly the
opposite way round from theway I usually seemy history, via the git log command!

2Where “you have already pushed” really means “someone has already pulled”. If you’ve pushed a branch to your own
repo and you weren’t expecting anyone to pull or collaborate on it, then you can do as you please!

5



Rewrite History With Rebase Interactive 6

First of all: git log

$ git log

commit e11e694f62832dc84473350d838040aa94977280

Author: Lorna Mitchell <lorna@lornajane.net>

Date: Mon Oct 20 10:49:47 2014 +0100

Bug definitely fixed by this commit

commit c8c923986d5df6e9281a77884af4f031e5355c15

Author: Lorna Mitchell <lorna@lornajane.net>

Date: Mon Oct 20 10:49:29 2014 +0100

Fixed bug 123 that's been causing all the issues

Oops! I think you can see the problem here. The interactive rebase is exactly the
right thing to iron out this history. Since I know I only want to operate on those last
2 commits, I can use this command rather than looking up which revision I want to
go back to: git rebase -i HEAD∼2.

When I do so, my editor opens a file that looks like this (the gotcha is that these
commits show in time order, oldest first, unlike git log. This confuses me every time):

pick c8c9239 Fixed bug 123 that's been causing all the issues

pick e11e694 Bug definitely fixed by this commit

There are also some comments in the file, which is basically the documentation for
the various options we showed above. Each commit is listed with its revision number
and commit message, and starting with the word pick. Next, I will edit the file to
describe what should happen, and then git works through line by line to actually do
it. At each point where my input is needed, it will pause and let me either edit the
message or actually use git. git status will warn me that I am
still mid-rebase while that’s the case, but I can type git rebase --abort to undo it
all at any time during the rebase.

If I don’t change anything and just save and close the file that git prompted me with,
then git will simply take and reapply all the changes, one at a time. This is the default



Rewrite History With Rebase Interactive 7

behaviour and the edits that I make to the file tell git what to do differently this time
around.

For the situation above, I’m simply going to squash that commit into the first one, so
it looks like I can actually fix a bug properly:

pick c8c9239 Fixed bug 123 that's been causing all the issues

fixup e11e694 Bug definitely fixed by this commit

When I save and close the file, git will make a new commit (with a new identifier)
containing all the changes needed to fix this bug. Since I chose the fixup option, I
don’t need to supply any more information or write a new commit message.

Now my git log looks much tidier:

$ git log

commit 83347acaf9e9efeaf948fea8718cfa40af0fb069

Author: Lorna Mitchell <lorna@lornajane.net>

Date: Mon Oct 20 10:49:29 2014 +0100

Fixed bug 123 that's been causing all the issues

Exactly like when we merge or rebase a branch, conflicts can occur here too. Git will
stop, and give you the space you need to resolve the conflict exactly like you do for a
merge conflict: identify the conflict, edit the files, then add and commit. There’s no
difference in what you need to do and when you are finished, git will continue with
its rebase.

Quick Quiz: Rebasics

For each of these situations, would you use rebase, or rebase interactive?

• To fix a branch that branched from the wrong place?
• To make a branch be based off the current tip of master and therefore
include all the changes in master?

• To edit the history on a single branch?



Rewrite History With Rebase Interactive 8

Quiz answers can be found at the end of the workbook

Assignment

1) Get onto the master branch and create three commits here.

2) Look at the history with git log, then use git rev-parse HEAD∼3

to check which revision we’ll be rebasing back to.

3) Rebase all three: delete the first commit you made and combine the
other two using squash

4) Look at the history again to check that you now have one commit as
you expected

I can rewrite (unpushed) history in git


	Table of Contents
	About This Workbook
	Make A Repository
	Handle Interruptions with Git Stash
	Rewrite History With Rebase Interactive

