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Introduction

This book tries to put words to what most experienced programmers already know. This
is necessary because, in the words of Michael Polanyi, “we can know more than we can
tell.” Our design choices are not the result of an ineluctable chain of logic; they come

from a deeper place, one which is visceral and inarticulate.

Polanyi calls this “tacit knowledge”, a thing which we only understand as part of some-
thing else. When we speak, we do not focus on making sounds, we focus on our words.

We understand the muscular act of speech, but would struggle to explain it.

To write software, we must learn where to draw boundaries. Good software is built
through effective indirection. We seem to have decided that this skill can only be learned
through practice; it cannot be taught, except by example. Our decisions may improve

with time, but not our ability to explain them.

It’s true that the study of these questions cannot yield a closed-form solution for
judging software design. We can make our software simple, but we cannot do the same
to its problem domain, its users, or the physical world. Our tacit knowledge of this

environment will always inform our designs.

This doesn’t mean that we can simply ignore our design process. Polanyi tells us that tacit
knowledge only suffices until we fail, and the software industry is awash with failure. Our
designs may never be provably correct, but we can give voice to the intuition that shaped

them. Our process may always be visceral, but it doesn’t have to be inarticulate.

And so this book does not offer knowledge, it offers clarity. It is aimed at readers who
know Clojure, but struggle to articulate the rationale of their designs to themselves and
others. Readers who use other languages, but have a passing familiarity with Clojure,

may also find this book useful.
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The first chapter, Names, explains why names define the structure of our software, and

how to judge whether a name is any good.

The second chapter, Idioms, provides specific, syntactic advice for writing Clojure which

is clean and readable.

The third chapter, Indirection, looks at how code can be made simpler and more robust

through separation.

The final chapter, Composition, explores how the constituent pieces of our code can be

combined into an effective whole.



Names

Names should be narrow and consistent. A narrow name clearly excludes things it
cannot represent. A consistent name is easily understood by someone familiar with the

surrounding code, the problem domain, and the broader Clojure ecosystem.

Consider this function:

(defn get-sol-jupiter
"Does a deep lookup of key "k™ within “m" under
“:sol” and ":jupiter’, returning "not-found® or
"nil” if no such key exists."
(Im kIl
(get-sol-jupiter m k nil))
([m k not-found]

(get-in m [:sol :jupiter k] not-found)))

We name the first parameter mbecause it can represent any map, and naming it map would
shadow the function of the same name. The second parameter is named k because it can
represent any key, and avoid naming it key for the same reason. We name the optional
third parameter not-found because that’s the name used by Clojure’s get function, as is

the default value of nil.

The function name itself, however, is potentially confusing. Without reading the doc-

string or implementation, a reader might reasonably assume it did any of the following:
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(get-in m [:sol-jupiter k])

(get (.sol-jupiter m) k)

(http/get (str "http://sol-jupiter.com/" k))

This name introduces a lot of ambiguity, considering the function can be replaced by its

implementation without losing much concision:

(get-sol-jupiter m :callisto)

(get-in m [:sol :jupiter :callisto])

But what if we were to change the name to describe its purpose, rather than its imple-

mentation?

(get-jovian-moon m :callisto)

(get-in m [:sol :jupiter :callisto])

Suddenly, the function begins to justify its existence. Jupiter’s moons may be stored
under [:sol :jupiter] for the moment, but that’s just an implementation detail, hidden
away behind the name. Our name is now a layer of indirection, separating what the
function does from how it does it. We can introduce even more indirection by renaming

the first parameter:

(get-jovian-moon galaxy :callisto)

Now the data structure used for our galaxy is also an implementation detail, hidden

behind a name.
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Indirection, also sometimes called abstraction!, is the foundation of the software we
write. Layers of indirection can be peeled away incrementally, allowing us to work
within a codebase without understanding its entirety. Without indirection, we'd be

unable to write software longer than a few hundred lines.

Names are not the only means of creating indirection, but they are the most common.
The act of writing software is the act of naming, repeated over and over again. It’s
likely that software engineers create more names than any other profession. Given this,
it’s curious how little time is spent discussing names in a typical computer science
education. Even in books that focus on practical software engineering, names are seldom

mentioned, if at all.

Luckily, other fields have given names more attention. Philosophers, in particular, have
a special fascination with names. In their terminology, the textual representation of a
name is its sign, and the thing it refers to is its referent. Until the late 19th century, the
prevailing theory was that signs and referents were arbitrarily related. A town named
Dartmouth doesn’t necessarily sit at the mouth of the Dart River. If it did, and the river
dried up, the name wouldn’t have to change. In the right context, ‘Dartmouth’ might refer

to a crater on the moon. The sign was just a means of pointing at something,

Then alogician named Gottlob Frege pointed out an issue: in Ancient Greece, there were
two celestial bodies named Phosphorus (Morning Star) and Hesperus (Evening Star), both
of which happened to be Venus. At first glance, this doesn’t seem to be a problem; both
signs share a referent, so they’re just different ways of talking about Venus. But if Evening
Star and Morning Star are just synonyms for each other, then these sentences should be

interchangeable:

« Homer believed the Morning Star was the Morning Star.

« Homer believed the Morning Star was the Evening Star.

I"Abstraction’ can describe this separation, but can also describe other, different concepts. Indirection’ is

preferable, because it is narrower. This distinction is expanded upon in the third chapter.
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The first sentence is obviously true, but the second one is almost certainly false: that
fact wasn’t discovered until hundreds of years after Homer’s death. It’s clear, then, that
they are not synonyms. We cannot only consider what a name references, we must also

consider how it is referenced. Frege called this the sense of a name.?

We can construct a similar example using Clojure’s semantics. Consider two vars, a and

b:

(def a 42)
(def b 42)

While a and b point to the same value, we cannot claim these two statements are

equivalent:
(= a a)
(= a b)

Avarisareference, a means of pointing at a referent. Clojure does its best to blur the line
between reference and referent; vars are automatically replaced by their runtime value.
But references are a form of indirection, and this gives us a degree of freedom in how

the code changes over time. While a and b are equal today, that may change tomorrow.

The sense of a var describes what it is, but also what we expect it to become. If we've
defined separate vars for the same value, it’s because we expect them to diverge. They

have the same referent but different senses.

Let’s consider a higher-level example: an id. We need a means of generating and

representing unique identifiers, and after some discussion we settle on UUIDs, which

2In the following century, many philosophers have expanded on Frege’s work, but their work isn’t directly
relevant to names in software. Anyone interested in following this thread should begin with Saul Kripke’s

Naming and Necessity.
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are randomly generated 128-bit values. Typically, a UUID is displayed as a collection of
hexadecimal characters and hyphens, such as 4a4c7d8b-bb8a-441a-982f-80fc90e80e47.

Having settled on this implementation, we can consider two sentences:

+ Our unique identifiers are unique.

+ Our unique identifiers are 128-bit values.

The first sentence is true, but the second is only true for our chosen implementation.
Should the implementation change, it might suddenly become false. Since the second
sentence is not timelessly true, we must treat it as effectively false; anything else would

enshrine the 128-bit implementation as permanent, constraining our future designs.

Our sign, in the philosophical sense, is a name’s textual representation: in the case of
our identifier, id. A name’s referent is what it points to: in our example, the UUID
implementation. A name’s sense is the set of fundamental properties we ascribe to it: in
this case, the identifier’s uniqueness. When we encounter a new name, we only need to
understand its sense. The underlying implementation, the referent, can change without

us ever knowing or caring.

A narrow name reveals its sense. Narrow doesn’t necessarily mean specific; a specific
name captures most of an implementation, while a general name captures only a small
part. An overly general name obscures fundamental properties and invites breaking
changes. An overly specific name exposes the underlying implementation, making it
difficult to change or ignore the incidental details. A narrow name finds a balance

between the two.

Narrowness doesn’t only derive from our choice of sign; we prefer id to unique-
arbitrary-string-id. The sense can be communicated through the surrounding code,
through documentation, and through everyday conversation. This means that narrow-

ness can be created or destroyed without ever touching the code. Carelessly substituting
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uuid for id in emails will distort the sense, no matter how clear our documentation.

Without constant care, narrowness may disappear.

This is especially difficult because the sense can remain unspoken. In the case of the
Morning and Evening Star, differing senses came with differing signs, but in practice
this is rarely true. An engineer working on the serialization format for the id may
decide to use the 128-bit encoding, implicitly treating that encoding as a fundamental
property. Another engineer working on a log parser might write a regex that looks
for 36 hexadecimal and hyphen characters, implicitly doing the same. Both can have
a reasonable conversation about ids without any hint that they are speaking past each

other.

This is not a problem that can be fully solved. We speak ambiguous words, we think
ambiguous thoughts, and any project involving multiple people exists in a continuous
state of low-level confusion. It is, however, a problem that can be minimized through

consistency.

A name whose sense is consistent with the reader’s expectations requires less effort from
everyone. If the map function is redefined within a namespace to return a data structure,
this must be carefully documented. Readers must deliberately remember what context
a map exists in, and will begin to second-guess their intuitive understanding of the code.
The code and documentation, then, must clarify what sort of map is being discussed

everywhere, not just within the inconsistent namespace.

Even if we clearly communicate the sense of a name, there can still be inconsistencies
between the sense and the referent. Our id example suffers from this; our identifier is
unique, but UUIDs are only very likely to be unique. If a poor random-number generator
is used, collisions between generated identifiers are not only possible, but plausible.
Unless we redefine our identifiers as “probably unique”, the assumption of uniqueness

will be baked into the surrounding code.

If this is a design flaw, it is a flaw shared across a wide variety of software. We can poke
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similar low-probability holes in most invariants using cosmic rays, data corruption that
still satisfies checksums, and so on. Errors caused by these inconsistencies can be very
expensive; they can only be understood by someone familiar with the implementation
and the assumptions made in the surrounding code. Despite this, checking to determine
whether every UUID is unique is impractical. An inconsistent name is not necessarily a

bad name.

Often, we can only choose how we wish to be inconsistent. Consider a datatype called
student in software used for university administration. The intuitive sense of this name

will differ by department:

+ For the admissions office, a student is anyone eligible to apply to the university.
+ For the bursar’s office, a student is anyone attending the university.

+ For the faculty, a student is anyone registered for classes.

If each department writes their own software, each can use student without confusion.
A sign’s sense is inferred from its context, and defining separate contexts allows us to
reuse it. More typically, we'd put each department in its own namespace, but then we
risk the admissions namespace invoking the bursar namespace with the wrong kind of
student. Keeping contexts separate requires continuous effort by the reader, and failing

to keep them separate creates subtle misunderstandings.

If we avoid separate contexts, our datatype can only be as narrow as its most general
case. If student represents anyone who might apply to the university, then our sense is
only consistent for the admissions department. To be consistent for everyone, we'd have

to create different names for each sense and use student for none of them.

In other words, the only way to be fully consistent is to have a one-to-one relationship
between signs and senses. This means that we must invent a sign for each sense, but also
that readers must agree on their sense. This is why student must be avoided at all costs: a

dozen different readers might ascribe a dozen different senses. Most natural names have
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a rich, varied collection of senses.> To avoid ambiguity we must use synthetic names,

which have no intuitive sense in the context of our code.

Category theory is a rich source of synthetic names. ‘Monad), to most readers, means
nothing. As a result, we can define it to mean anything. Synthetic names turn comprehen-
sion into a binary proposition: either you understand it or you don’t. Between experts,
synthetic names can be used to communicate without ambiguity. Novices are forced to

either learn or walk away.

Conversely, a natural name is at first understood as one of its many senses. Everyone
understands, more or less, what an id is. In a large group, however, these understandings
might have small but important differences. These understandings are refined, and
gradually converge, through examination of the documentation and code. At the cost

of some ambiguity, novices are able to participate right away.

Natural names allow every reader, novice or expert, to reason by analogy. Reasoning by
analogy is a powerful tool, especially when our software models and interacts with the
real world. Synthetic names defy analogies,* and prevent novices from understanding

even the basic intent behind your code. Choose accordingly.

3The ambiguity and utility of everyday names is explored more fully in William Kent’s Data and Reality,

which was published in the late 1970s just as relational databases were coming into vogue.
40f course, people will still try. This is how the monad became a burrito.
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Naming Data

Every var, let-bound value, and function parameter must be named. When we define a

var representing immutable data, we control both the sign and referent:

(def errors #{:too-hot :too-cold})

However, we do not control the sense; two people can reasonably disagree over whether
:too-hard and :too-soft should be added to the set. Even if we narrow our names, the

problem persists:

(def porridge-errors #{:too-hot :too-cold})

(def bed-errors #{:too-hard :too-soft})

Can we add :too-watery and :too-gummy to porridge-errors, even if Goldilocks never

had those specific complaints? We can sidestep this issue by never changing the value:

;; DO NOT CHANGE UNDER PENALTY OF HEAT DEATH

(def errors #{:too-hot :too-cold})

But if the data will truly never change, we should consider whether it belongs in a var. We
prefer Math/PI to 3.14159. . ., because it’s shorter and prevents subtle copy-paste errors.
If errors is used in multiple places, and we don’t want to put threats next to all of them,

keeping it around is reasonable. Otherwise, it may be best to replace errors with its value.

When we define a function parameter, we only control the sign; the data it represents
could be literally anything. This problem is exacerbated by Clojure’s lack of a type system,
but even in languages with sophisticated type systems, most types can encode values that

fall outside the type’s sense; we might represent an id using a 128-bit value, but not all
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possible 128-bit values are valid identifiers in our system. Dependent type systems, like
those used in Agda and Idris, try to address this problem by narrowing the possible values
that the type can represent. But even these languages don’t prevent us from making
simplistic assumptions or protect us from the consequences when the world doesn’t

conform to them. Type systems are a tool, not a solution.

If a parameter’s sense assumes certain invariants, we can enforce them at the top of the
function. The relationship between our functions is not adversarial; we do not need to
check and re-check invariants at every level of our system. The relationship between
our software and the outside world, however, can be adversarial. Most invariant checks

should exist at the periphery of our code.

When defining a let-bound value we control the sign, but we also control the right side of
the let binding. While a function parameter’s value may be unconstrained, a let-bound

value is constrained by all the code that precedes it.

Names provide indirection. For vars, the indirection hides the underlying value. For
function parameters, the indirection hides the implementation of the invoking functions.

For let-bound values, the indirection hides the right-hand expression:

(let [europa
callisto
ganymede ...]

(f europa callisto ganymede))

In this expression, if it’s self-evident what europa, callisto, and ganymede represent, then
the right side of the 1et binding can be ignored. The right side is a deeper level of the code,

relevant only if the what of europa doesn’t satisfy, and we need to understand the how.

This is possibly Clojure’s most important property: the syntax expresses the code’s
semantic layers. An experienced reader of Clojure can skip over most of the code and

have a lossless understanding of its high-level intent.
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Of course, this is only true when we avoid side effects. If the right side of a let-binding
does something more than return a value, we have to read it exhaustively to reason about
how it affects the surrounding code. Readers’ ability to safely skim Clojure relies on both

its syntax and its emphasis on immutability.

The threshold for self-evidency depends on the reader. Every name we create seems
self-evident as we create it. Six months later, it may seem less so. A reader with domain
expertise and no engineering background will find only a subset of names self-evident.
An experienced engineer with no domain knowledge will find a different subset to be

self-evident.

Each time they encounter an unfamiliar name, readers must dive deeper into the code
and documentation. In the limit case, where every name is unfamiliar and no name is
used twice, readers would have to read everything to make sense of anything. However,
if we choose consistent names, only a few deep dives are required to understand the core

concepts.

Code buried deep under layers of indirection will have a smaller, more determined
audience. From that audience, we can expect familiarity with names used elsewhere in
the code, and a willingness to understand unfamiliar concepts. Names at the topmost
layers of the code will be read by novices and experts alike, and should be chosen

accordingly.

Where a value is used repeatedly, we may prefer to use a short name rather than a self-

evident one. Consider this code:

(doseq [g (->> planets
(remove gas-planet?)

(map surface-gravity))]

If we renamed g to surface-gravity, most readers could understand the intent without
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reading the right-hand expression. Unfortunately, this shadows the function of the same
name and is fairly verbose. By itself, though, g doesn’t mean anything. The reader is

forced to carefully read both sides of the binding to understand the intent.

If the left-hand name isn't self-evident, the right-hand expression should be as simple as

possible. This is preferable to the above example:

(Llet [surface-gravities (->> planets
(remove gas-planet?)
(map surface-gravity))]
(doseq [g surface-gravities]

)

Finding good names is difficult, so wherever possible we should avoid trying. If we're
performing a series of transformations on data, we shouldn’t name every intermediate
result. Instead, we can compose the transformations together using —>> or some other

threading operator.

If a function’s implementation is more self-explanatory than any name you can think
of, it should be an anonymous function. This can be true even for relatively complex
functions. A large function, named or anonymous, asserts that it cannot be made easier

to understand using indirection. A large function is not necessarily a bad function.

If a function has grown unwieldy, but you can’t think of any good names for its pieces,

leave it be. Perhaps the names will come to you in time.
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There cannot be hard and fast guidelines for choosing a good name, since they have
to be judged within their context, but where the context doesn’t call for something
special, there can be a reasonable collection of defaults. The defaults given here are
not exhaustive and mostly come from common practices in the Clojure ecosystem. In

a codebase with different practices, those should be preferred.

If a value can be anything, we should call it x and limit our operations to =, hash, and str.
We may also call something x if it represents a diverse range of datatypes; we prefer x
to string-or-float-or-map, but those possible datatypes must be explicitly documented

somewhere.

If a value is a sequence of anything, we should call it xs. If it is a map of any key onto any
value, it should be called m. If it is an arbitrary function, we should call it f. Sequences of

maps and functions should be called ms and fs, respectively.
A self-reference in a protocol, deftype, or anonymous function should be called this.

If a function takes a list of many arguments with the same datatype, the parameters
should be called [a b ¢ ... & rst], and the shared datatype should be clearly docu-

mented.

If a value is an arbitrary Clojure expression, it should be called form. If a macro takes

many expressions, the variadic parameter should be called body.

However, for most code we're able to use narrower names. Let’s consider a student
datatype, which is represented as a map whose keys and values are well defined using
either documentation or a formal schema. Anything called student should have at least

these entries, and sometimes only these entries.

The name students represents a sequence of students. Usually these sequences are not
arbitrary; all students might, for instance, attend the same class. Any property shared by

these students should either be clear from the context or clearly documented.

A map with well-defined datatypes for its keys and values should be called key—>value. A
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map of classes onto attending students, for instance, should be called class—>students.
This convention extends to nested maps as well; a map of departments onto classes onto

students should be called department—>class—>students.

A tuple of different datatypes should be called a+b. A 2-vector containing a tutor and
the student they’re tutoring should be called tutor+student. A sequence of these tuples

should be called tutor+students.

Notice that tutor+students is ambiguous; it can either be a sequence of tutor+student
tuples or a single tuple containing students. Likewise, class—>students might be a single
map, or a sequence of class—>student maps. Often, it’s clear from context which is
meant, but otherwise we have to create a name for our compound datatype. If we call our

tutor-and-student tuple a tutelage, then we can refer to tutelages without ambiguity.

But tutelage is a synthetic name, as are most names for compound data structures.”> As
such, we need to carefully document their meaning and only use them where our readers
will have read the documentation. The naming conventions given here, like anonymous
functions and threading operators, are a way to avoid introducing new names until

absolutely necessary.

>The English language rarely anticipates our need for a particular permutation of nouns.
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Naming Functions

Atruntime, our data scope is any data we can see from within our thread. It encompasses
function parameters, let-bound values, closed-over values, and global vars. Functions
can do three things: pull new data into scope, transform data already in scope, or push
data into another scope. When we take values from a queue, we are pulling new data
into our scope. When we put values onto a queue, we are making data available to other

scopes. HT'TP GET and POST requests can be seen as pulling and pushing, respectively.

Shared mutable state creates asymmetric scopes. Consider a public var representing an

atom:

(def unusual-events (atom 0))

Any thread can dereference this atom; the current count is within scope for every thread
within our process. However, if we increment unusual-events we are taking information
local to our thread and making it visible to all the others. Reading from the shared

mutable state isn’t a pull, but writing to it is a push.®

Most functions should only push, pull, or transform data. At least one function in every
process must do all three,” but these combined functions are difficult to reuse. Separate

actions should be defined separately and then composed.

If a function crosses data scope boundaries, there should be a verb in the name. If it pulls
data from another scope, it should describe the datatype it returns. If it pushes data into
another scope, it should describe the effect it has. Sometimes functions simultaneously
push and pull data, usually for reasons of efficiency; in these cases the name should cap-

ture both aspects, and the documentation should carefully explain the specific behavior.

6This asymmetry, and the broader concept of isolated data scopes, is discussed in greater detail in the final

chapter, Composition.
7Only trivial processes, like echo or cat in Unix, do not perform all three actions. This is also expanded

upon in the last chapter.
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If a function takes an id and returns a binary payload, it should be called get-payload.
If it takes an id and deletes the payload, it should be called delete-payload. If it takes an
id, replaces the payload with a compressed version, and returns the result, it should be

called compress-and-get-payload.

If these functions are in a namespace specific to payloads, they can simply be called
get, delete, and compress-and-get. We can assume that other namespaces will refer to
our namespace with a prefix, such as payload/get or p/get. This means that shadowing
Clojure functions like get? is safe and useful, but we should take care to specify this at

the top of our namespace:

(ns application.data.payload

(:refer-clojure :exclude [get]))

This signals to our readers that get means something else in this namespace. We should
also define our get at the bottom of the namespace. Then, if we mistakenly use get instead
of clojure.core/get somewhere in the middle, the compiler will complain that get is an

invalid symbol rather than silently use our alternate implementation.

If a function only transforms data, we should avoid verbs wherever possible. A function
that calculates an MD5 hash, defined in our payload namespace, should be called md5.
A function that returns the timestamp of the payload’s last modification can be called
timestamp, or last-modified if there are other timestamps.® A function that converts the
payload to a Base64 encoding should be called —>base64. In a less narrow namespace,

these functions should be named payload-md5 and payload—>base64.

However, when modifying data we often have to use a verb. If a function takes a data
structure representing a university and returns a university with a student added to

a particular department, the function should be called add-student. This name, taken

8In any place but Clojure’s core implementation, get should imply pulling data from another scope.
°This means that the example function at the beginning of the chapter should lose the get and simply be

called jovian-moon. It’s cleaner.
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alone, is ambiguous as to whether the student is being added to a department or to the
university as a whole. Since the function will be invoked with a department parameter,

however, this should be immediately clear in context.

Some verbs, like conj and assoc, are obviously related to data transformation. Most
verbs, though, are ambiguous. In some codebases, functions that affect external data
scopes have a ! added to the end of their name. However, this convention is not universal,
even among core Clojure functions. Even if your code uses the ! marker, the best way
to keep things clear for your readers is to avoid impure functions where possible and

document where necessary.

In theory, a namespace can hold an unlimited number of functions as long as none of
them share the same name. In practice, namespaces should hold functions that share a

common purpose so that the namespace lends narrowness to the names inside it.

Typically, this means that all the functions should operate on a common datatype, a
common data scope, or both. If all the functions in a namespace operate on a binary
payload, we can safely omit payload from all the names. If all the functions in a namespace
are used to communicate with a database, we can easily understand the scope of the
functions. If all the functions in a namespace are used to access a particular datatype in

a database, we can both use shorter names and easily understand the data scope.

A large number of namespaces is taxing for our readers; if we have ten tables in a
database, creating ten different namespaces just so we can write europa/get rather than
db/get-europa has questionable value. Therefore, we should add new namespaces only
when necessary. By questioning the need for new namespaces, we implicitly question the

need for new datatypes and data scopes, which will lead to simpler code overall.
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Naming Macros

There are two kinds of macros: those that we understand syntactically, and those that

we understand semantically. The with-open macro is best understood syntactically:

(defmacro with-open [[sym form] & body]
“(let [~sym ~form]
(try
~@body
(finally

(.close ~sym)))))

If we fail to type-hint sym as java.io.Closeable or something similar, our with-open
form will give a reflection warning about a close method. Anyone who doesn’t know
the macroexpanded form of with-open will search their code for some reference to close,
find nothing, and be perplexed. To use with-open effectively, we must macroexpand it in

our heads whenever it appears in the code.

Macros that we understand syntactically require us to understand their implementation,
so they are a poor means of indirection. They can reduce the volume of our code but not
its conceptual burden. A good name will tell the reader that it is a macro and prompt them
to look at the implementation. Any name with a with prefix, or which uses the name of

a Clojure special form like def or let, should have a predictable macroexpanded form.

If we expect our code to have a small audience, these macros may become quite large.
This can be especially useful to reduce code size in the lower levels of the code, or in
tests. In these cases, the macros should be defined and used within a single namespace;

the name is unimportant as long as it isn’t misleading.

However, some macros are too complex to be understood through their macroexpanded

form. The go form in core.async is one such macro; not even the authors can easily
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describe the macroexpansion for arbitrary code. In these cases, we must understand the
semantics of the transformation. Transforming arbitrary code is difficult and sometimes
impossible; the go macro, for instance, skips over any anonymous functions defined in its
scope. Readers must not only understand the semantics of the transformation but also its
exceptions and failure modes. For this reason, macros that we understand semantically

are also a poor means of indirection.

Since macros cannot be self-evident, the clarity of the macroexpanded syntax or seman-
tics matters more than the clarity of the name. Macro names are usually synthetic and

require careful documentation.

Names should be consistent. They should build upon their associations within the
code and within natural language. Natural names are a powerful, but broad, means of
communicating the sense of a name. Synthetic names are, by definition, inconsistent.
They prevent readers from reasoning by analogy and bringing their own intuition to

bear upon the problem of understanding the intent behind the code.

Names should be narrow. They should communicate their sense without potential for
confusion. Natural names have many senses, and they allow groups to assume different
senses for the same sign without ever realizing it. These disparate senses will only
converge over time through careful, deliberate communication. The learning curve for

a synthetic name, on the other hand, is a sheer cliff.

Narrowness and consistency are often in tension. Finding balance requires understand-
ing your audience. Synthetic names have little downside for an audience that already
understands them and enable them to communicate complex ideas. For novices, each
synthetic name represents an obstacle that must be surmounted. Natural names allow
for continuous progress but at the risk of misunderstandings along the way. In different

parts of your code, the size and makeup of the audience will vary. The audience will



Names 22

also change over time; success with an expert audience will inevitably attract less-expert

readers.

Names are a fundamental medium for communicating with your readers. The concepts
and terminology in this chapter are not a formula for choosing perfect names, but they
will give you the tools to enumerate and discuss your options. These concepts will
be used in subsequent chapters to discuss other design considerations when writing

Clojure.
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