Updated for i0OS 14 & macO0S 11

WAV ENGIERgUEINERE

Core ML Survival Guide

More than you ever wanted to know about mlmodel files and
the Core ML and Vision APIs

Matthijs Hollemans
This book is for sale at http://leanpub.com/coreml-survival-guide

This version was published on 2020-10-09

)

Leanpub

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean
Publishing process. Lean Publishing is the act of publishing an in-progress ebook using
lightweight tools and many iterations to get reader feedback, pivot until you have the
right book and build traction once you do.

© 2018 - 2020 M.I. Hollemans

http://leanpub.com/coreml-survival-guide
http://leanpub.com/
http://leanpub.com/manifesto

Contents

Introduction i
WhoIsThis Book For? ii
Useful Links e iii
Part 1: The Core ML Ecosystem 1
Whatis Core ML —and WhatisItNot? 2
coremltools 6
Part 2: Converting Models 11
Image Preprocessing it e 12
Part 3: Examining Models 21
Viewing Models With Netron 22
The mlmodel File Format 23
Using the SpectoEditModels 34
Part 4: Model Surgery 41
Saving the Weights as 16-bitFloats 42
Part5:Insidethe App 45
The Neural Enginet e e 46

Transposing an MLMultiArray 48

CONTENTS

Part 6: Advanced Topics

Working With Video

Introduction

This guide is a collection of tips and tricks for working with Core ML and mlmodel files. I
collected these during my work as machine learning consultant for iOS and macOS apps,
which often involves making models suitable for use with Core ML.

At first sight, the Core ML API appears very simple to use. Xcode even automatically
generates a class for you that makes using machine learning models as easy as:

let model = YourModel()
let result = try? model.prediction(input: somelnput)

Such a high-level API is really convenient for the developer when everything goes smooth
and works as intended. Unfortunately, things don’t always go smooth...

Core ML hides away a lot of the complexity involved in running machine learning models.
But that complexity is still there and — like it or not — you’re going to have to deal with it
when the bits start hitting the fan.

I know for a fact that a lot of developers struggle with the finer points of Core ML because
for the past couple of years I've been keeping a close eye on the Core ML topics on
StackOverflow! and the Apple Developer Forums?. I also receive a lot of questions on my
GitHub repos and by email.

It’s clear that using Core ML isn’t always as easy as it’s supposed to be...

That’s why I wrote this guide. It contains pretty much everything I know about Core ML.
AsIlearn new things, I'll keep updating this guide.

I primarily work with deep learning and computer vision, so most of the tips in this guide
are about neural networks that take image inputs — but a lot of the advice applies to other
model types and data types too. The code examples are in Python and Swift, but should be
easy enough to translate to Objective-C.

Let me know if anything is still unclear, or if you have a question about Core ML that is not
answered in this book. Happy reading!

Thttps://stackoverflow.com/questions/tagged/coreml
Zhttps://developer.apple.com/forums/tags/core-ml

https://stackoverflow.com/questions/tagged/coreml
https://developer.apple.com/forums/tags/core-ml
https://stackoverflow.com/questions/tagged/coreml
https://developer.apple.com/forums/tags/core-ml

Who Is This Book For?

I wrote this book to help out developers who have questions about Core ML, or who want
to learn how to get the best performing Core ML models in their apps.

Just to be clear: This book does not teach machine learning!

You’re already supposed to know what a model is, the difference between training and
inference, and so on. If you’re completely new to machine learning, please check out my
other book Machine Learning by Tutorials3.

This book also isn’t a beginner’s guide to Core ML. The intended audience is people who
want to get more out of Core ML, or who are stuck trying to get their models to work.

If you haven’t used Core ML before, I suggest you first follow one of the many beginner
tutorials* available online and then come back to this book if you run into any problems —
or if you want to learn more, of course!

3https://store.raywenderlich.com/products/machine-learning-by-tutorials
4https://www.raywenderlich.com/7960296-core-ml-and-vision-tutorial-on-device-training-on-ios

ii

https://store.raywenderlich.com/products/machine-learning-by-tutorials
https://www.raywenderlich.com/7960296-core-ml-and-vision-tutorial-on-device-training-on-ios
https://www.raywenderlich.com/7960296-core-ml-and-vision-tutorial-on-device-training-on-ios
https://store.raywenderlich.com/products/machine-learning-by-tutorials
https://www.raywenderlich.com/7960296-core-ml-and-vision-tutorial-on-device-training-on-ios

Useful Links

You may find the following links useful in your Core ML journey.

Official Core ML documentation:

» The coremltools documentation is a good place to get started. This is for coremltools
version 4 and later.

» The most up-to-date specification of the Core ML file format is in the proto files, which
you’ll look at in great detail in this book.

0Old documentation that can still be useful sometimes:

» User manual for coremltools version 3.

 Code snippets and Jupyter notebooks for various tasks such as changing input/output
datatypes, quantizing, printing out layer attributes, making updatable models, and so
on.

Source code:

* The coremltools source code. Sometimes the only way to convert models is to hack
coremltools, so it’s good to know your way around this repo.

» The GitHub repo with the accompanying source code files for this book.

» CoreMLHelpers makes it a little easier to work with Core ML in Swift.

Tutorials and blogs:

A curated list of machine learning resources, with a focus on Apple technologies.

Machine learning tutorials at raywenderlich.com.

Heartbeat by fritz.ai, a great blog about machine learning on the edge.

My own blog, which covers Core ML but also Metal Performance Shaders and other
topics related to machine learning in Swift.

iii

https://coremltools.readme.io/
https://github.com/apple/coremltools/tree/master/mlmodel/format
https://apple.github.io/coremltools/
https://github.com/apple/coremltools/tree/0730319f2c2294532f578c84dca88a6a0d65ff92/examples
https://github.com/apple/coremltools
https://github.com/hollance/coreml-survival-guide
https://github.com/hollance/CoreMLHelpers
https://github.com/onmyway133/fantastic-machine-learning
https://www.raywenderlich.com/library?category_ids%5B%5D=158
https://heartbeat.fritz.ai/
https://machinethink.net/blog

Useful Links iv

Questions and answers:

* Check out the list of open issues to see if your problem is already known and perhaps
has a workaround.

» Core ML questions on StackOverflow.

» The Core ML section of the Apple Developer Forums.

https://github.com/apple/coremltools/issues
https://stackoverflow.com/questions/tagged/coreml
https://developer.apple.com/forums/tags/core-ml

Part 1: The Core ML Ecosystem

What can you do with Core ML and where does it fit into the world of machine learning?

What is Core ML — and What is It Not?

Apple’s marketing department has done a good job of hyping up Core ML, but it’s important
to understand exactly what Core ML is and also what it isn’t. The goal of this chapter is to
set realistic expectations.

Core ML is really two things:

1. The mlmodel file format definition. This is an open file format for machine learning
models.

2. The CoreML.framework that lets you perform inference in your iOS, tvOS, watchOS
and macOS apps using the model from an mlmodel file.

Most Core ML tutorials focus on the API from the framework but to make the most of Core
ML you also need to understand how the mlmodel format works. In this guide yow’ll find
a lot of tips for working with mlmodel files.

Core ML and the machine learning community

So where does Core ML fit into the larger picture?

The Core ML framework and the mlmodel format are on the fringes of the ML ecosystem.
Literally, because Core ML does machine learning “on the edge” as opposed to “in the cloud”
— but also because to the vast majority of machine learning practitioners, Core ML is not
important at all.

Most of the effort in machine learning goes into designing and training the models, while
Core ML is just one technology of many for deploying the trained models into production.
And mlmodel is just another file format.

It’s good that Apple opened up the mlmodel specification. This has made it easier for
other tools to adopt the format. However, mlmodel is not the industry standard for the
interchange of models between platforms. It looks like ONNX>, the Open Neural Network
eXchange format, is going to win that race.

Shttp://onnx.ai

http://onnx.ai/
http://onnx.ai/

What is Core ML — and What is It Not? 3

Perhaps things will change as machine learning on mobile becomes more popular, but right
now Core ML isn’t having much of an impact on the industry. One reason may be that Core
ML, unlike pretty much all other machine learning tools, is not open source and therefore
does not get to benefit from an active community of users and developers.

Don’t get me wrong... Core ML is great for i0S and macOS developers who want to add
machine learning to their apps, but it’s just one technology among many competitors that
all try to do the same thing. Even on Apple platforms, Core ML is not the only choice for
adding machine learning to your apps.

Benefits of using Core ML

The following are good reasons for using Core ML in your app:

» The API is easy to use, especially with the tips from this guide. ;-)

* You only need to provide the mlmodel file. You don’t need to implement any of the
machine learning algorithms yourself.

* Core ML can run your model on the CPU, on the GPU, or on the Neural Engine,
depending on what hardware is available in the user’s device. This allows it to make
optimal use of the available resources. Core ML can even split up the model to only
perform certain parts on the GPU (tasks that need to do a lot of computation) and the
other parts on the CPU.

» Because Core ML can run models on the CPU, you can develop and test your apps on
the i0S Simulator. This is not the case for apps that directly use the Metal APIs, since
the Simulator does not allow Metal apps. Nor do Metal apps play well with unit tests.
Core ML doesn’t have these problems. (Update: as of i0S 13, Metal apps can run on the
Simulator too but Metal Performance Shaders still cannot.)

» The biggest benefit: Core ML can use the Neural Engine on devices with the A12 chip
or better. The Neural Engine gives a great performance boost and right now Core ML
is the only way to get your hands on this extraordinary computing power.

Prior to the release of the iPhone XS, I advised my clients to prefer Metal Performance
Shaders over Core ML in order to get the best possible speed, especially for models that
need to process real-time video. I still recommend that for older devices, but having access
to this new Neural Engine really changes things and makes Core ML much more attractive.

What is Core ML — and What is It Not? 4

Downsides of Core ML

There’s also some bad news — the biggest downsides of Core ML are:

 Creating an mlmodel file is not always as easy as it looks. You may need to wrestle with
coremltools and Python code. (That’s why I called this the Core ML “survival” guide.)

» Core ML supports only a limited number of neural network layer types. It is possible to
create custom layers but that requires implementing the machine learning algorithms
yourself, and you lose the ability to use the Neural Engine. Core ML 3 introduced
many new layer types, including low-level mathematics operations that can be used to
implement new kinds of layers directly inside the mlmodel, but these are not always
sufficient.

» The speed can be unpredictable. Sometimes a model will suddenly run a lot slower
than before. It appears as if Core ML is trying to be clever in how it schedules things,
but doesn’t always succeed.

* You have little control. Core ML is a black box and so it’s hard to understand why and
how it does certain things.

» Troubleshooting is difficult. For example, you cannot easily look at the output pro-
duced by intermediate layers.

* The mlmodel files are unprotected. Even though your app doesn’t ship with the
original mlmodel file but with a compiled version, it’s still possible for competitors
to download your app and reverse engineer your model. (Update: As of i0OS 14 and
macOS 11, Core ML models can be automatically encrypted.)

* Core ML is not open source and is only updated with new OS releases. Therefore, Core
ML will always lag behind the state-of-the-art.

Some of these limitations are more serious than others, but if you want to use Core ML in
your app, you’ll have to learn to work with them or around them. That’s what this guide is
for!

Alternatives to Core ML

For performing inference on the device you have a few options besides Core ML:

What is Core ML — and What is It Not? 5

» TensorFlow Lite. While it’s possible to convert some TensorFlow models to Core ML,
only a limited number of operations are supported. If you have a TensorFlow graph
that Core ML can’t handle, you can use TF-Lite® instead. Note that TF-Lite requires you
to write C++ and supports fewer operations than the full version of TensorFlow. TF-
Lite can run models on the CPU, on the GPU using the GpuDelegate, and on the Neural
Engine using the CoreMLDelegate (in which case TF-Lite simply converts the model to
Core ML format and then uses Core ML to run it).

» PyTorch Mobile. I don’t have a lot of experience yet with this framework’, but
currently it only supports model execution on the CPU, not on the GPU or Neural
Engine.

* Metal Performance Shaders (MPS). This is a toolkit for running neural networks
with Metal, Apple’s language for programming the GPU. Core ML actually uses MPS
internally too, but you can often get a speed improvement by implementing the neural
network yourself directly with MPS — especially on devices that do not have a Neural
Engine. MPS also can do training on the device.

* Roll your own. Using the Accelerate framework, BNNS, Metal or OpenGL, and third-
party libraries such as Eigen. Generally, I recommend against doing this as it’s a lot
of work and usually not worth the effort. (I've done this a few times with TensorFlow
models to avoid the overhead of the TensorFlow API.)

Even if you use Core ML, you may need to write additional pre- or post-processing code
using the Accelerate framework. And if your model needs a custom layer, you’ll have to
write some Metal code. So even with Core ML you may still end up using these other APIs.

Shttps://www.tensorflow.org/lite/
Thttps://pytorch.org/mobile/home/

https://www.tensorflow.org/lite/
https://pytorch.org/mobile/home/
https://www.tensorflow.org/lite/
https://pytorch.org/mobile/home/

coremltools

Chances are that your model was trained with a Python-based tool such as TensorFlow,
Keras, PyTorch, or MXNet. Because Python is the language of choice for machine learning,
Apple has provided the coremltools package for working with Core ML models from
Python.

The primary reason for using coremltools is to convert your model to Core ML format, but
it does more than just conversions alone. You can also use it to tweak existing models and
even build models from scratch.

What does it do?

coremltools lets you perform three main tasks:

1. Converting a trained model to Core ML format.
2. Using a Core ML model to make predictions from Python.

3. Changing properties of an existing Core ML model.

The coremltools package also contains the official specification of the Core ML file format.
You’ll look at this in detail in the mlmodel file format chapter.

coremltools 4 is different!

The way to convert models has changed quite a bit from coremltools v3. The old neural
network converters are deprecated and have been replaced by a newer, more flexible
design.

In this book you’ll find instructions for both coremltools 4 and 3, because sometimes you
may still want to use the old converters. For example, I prefer to use coremltools 3 to
convert Keras models when possible because this results in much simpler graphs (with
some tricks, this is even possible for tf.keras models). And even though it’s no longer
recommended to convert PyTorch models through ONNX, sometimes this workaround is
still necessary when coremltools 4’s PyTorch converter chokes on the model.

6

coremltools 7

The built-in converters

coremltools can convert neural networks made by the following tools:

» TensorFlow (1.x and 2.x), including tf.keras models
» PyTorch

* Caffe (not Caffe2)

* Keras (the standalone version, up to 2.2.4)

* ONNX
It also has converters for linear models and decision trees made by these packages:

* LIBSVM
» gcikit-learn

* XGBoost

To convert TensorFlow and PyTorch models, you use the new unified conversion API.

You no longer need to use the separate tfcoreml or onnx-coreml packages to convert these
types of models! It’s also not recommended to use ONNX for PyTorch models anymore,
since coremltools can now directly convert PyTorch models.

The converters for Keras, Caffe, and ONNX do not use this new API. These are still the old
converters from coremltools 3. The ONNX converter is the old onnx-coreml package, which
is now part of coremltools. These converters will not be developed further and will only
get bug fixes.

For converting MXNet models, youw’ll still need a separate converter in addition to coreml-
tools.

Doing it by hand

If a converter does not exist for your model format, or the existing converter cannot handle
your trained model for some reason, you can always write your own converter:

* NeuralNetworkBuilder from the coremltools.models.neural network.builder module lets
you construct a neural network layer-by-layer.

coremltools 8
* KNearestNeighborsClassifierBuilder from coremltools.models.nearest neighbors lets you
construct a k-Nearest Neighbors classifier.

* TreeEnsembleClassifier and TreeEnsembleRegressor from coremltools.models.tree ensemble
let you construct tree ensemble models such as random forests.

* Pipeline, PipelineClassifier, and PipelineRegressor from coremltools.models.pipeline
let you build pipelines, which consist of several models in sequence that act as if they
were a single model.

Note: Because mlmodel files are in protobuf format, it’s also possible to create them without
using coremltools at all by directly writing protobuf messages.

Making predictions

To make predictions with a converted Core ML model from a Python script or Jupyter note-
book, you use the coremltools.models.MLModel object. This is primarily useful for verifying
the model was converted correctly.

Note: This functionality is only available on macOS 10.13 or better. Even though coreml-
tools works fine on Linux for converting models, it can’t make predictions from Linux.

Nurse, scalpel please!

The other functionality inside the coremltools.models module, as well as coremltools.utils,
is used to perform surgery on existing Core ML models.

For example, you can use these functions to quantize the model’s weights, to remove or
rename layers, and anything else you might want to do to patch up your Core ML model.
You’ll see many examples in this guide.

Installing coremltools

The easiest way to install coremltools is through the Python package manager pip:

coremltools 9

pip install -U coremltools

coremltools works with both Python versions 2 and 3. You can use it on macOS but also
from Linugx, although certain functionality that requires the Core ML framework, such as
making predictions, only works on the Mac.

Tip: coremltools is an active open source project and the official PyPI package® is not
always up-to-date with the latest changes. If you don’t mind living on the edge, or if the
official release does not yet have a bug fix or a new feature that you need, you can install
coremltools directly from GitHub:

pip install -U git+https://github.com/apple/coremltools.git

For example, ifloading a model using coremltools gives an error such as the following, then
try installing the latest coremltools directly from the GitHub repo.

Error compiling model: "Error reading protobuf spec. validator error:
The .mlmodel supplied is of version 3, intended for a newer version of
Xcode. This version of Xcode supports model version 2 or earlier.

But be warned that using the GitHub version may cause problems of its own... It is
under active development, which occasionally breaks things. I often find myself switching
between the GitHub version and the last official release.

Using coremltools

To use coremltools in your Python script, write:

import coremltools as ct

When Python loads the coremltools package, you may get warning messages such as the
following:

8https://pypi.python.org/pypi/coremltools

https://pypi.python.org/pypi/coremltools
https://pypi.python.org/pypi/coremltools

coremltools 10

WARNING: root:Keras version 2.3.1 detected. Last version known to be fully
compatible of Keras is 2.2.4 .

WARNING: root:TensorFlow version 1.15.0 detected. Last version known to be
fully compatible is 1.14.0 .

Usually you can safely ignore these messages, but be aware that you may run into errors
when converting your Keras or TensorFlow models. Especially the Keras API tends to
change a lot between releases, and if coremltools depends on some functionality that got
moved or renamed, the conversion will fail.

Tip: If coremltools throws an exception while converting your model, create a new
virtualenv and install the last known compatible versions of Keras and TensorFlow into
that environment — Keras 2.2.4 and TensorFlow 1.13.1 according to the warning, although
by the time you read this the version numbers may have changed — and try the conversion
from inside this virtualenv.

In the next chapters you’ll see how to use coremltools to convert models. In parts 3 and
4, youw’ll learn how coremltools can be used to take apart models, fix issues, and put them
back together again.

Part 2: Converting Models

To use a machine learning model with Core ML, you first need to convert it to the mlmodel
format. This part of the book explains how to avoid potential pitfalls.

Image Preprocessing

The most common reason for getting wrong predictions out of Core ML is using incorrect
image preprocessing options.

A cvpixelBuffer usually contains pixels in ARGB or BGRA format where each color channel
is 8 bits. That means the pixel values in the image are between 0 and 255.

But your machine learning model may not actually expect pixels between 0 and 255. Other
common choices are:

* between 0 and 1

* between -1 and +1

* between -2 and +2

» between -128 and +128 with the average values of R, G, and B subtracted

* the color channels in BGR order instead of RGB
If your model expects pixel values in a different range than 0 — 255, you need to let Core

ML know about this. Core ML can then convert the cvPixelBuffer into the format that your
model understands, using a special preprocessing stage in the neural network.

This is very important! With the incorrect preprocessing settings, coremltools will create
an mlmodel file that will interpret your input images wrongly. The model will be working
on data it does not understand — and that produces results that don’t make sense. Garbage
in, garbage out.’

Note: For grayscale images, it’s also important to know what value is considered black and
what value is considered white. In some models 0 is black and 1 is white, but in others 1 is
black and 0 is white.

9https://en.wikipedia.org/wiki/Garbage_in,_garbage_out

12

https://en.wikipedia.org/wiki/Garbage_in,_garbage_out
https://en.wikipedia.org/wiki/Garbage_in,_garbage_out
https://en.wikipedia.org/wiki/Garbage_in,_garbage_out

Image Preprocessing 13
What is the correct preprocessing for my model?

Usually the Python training code for the model has a preprocess input() or normalize()
function that converts the pixels into the correct format. Keras, for example, uses the
following arithmetic for models trained on ImageNet:

def preprocess input(x):

x /= 127.5
X -= 1.0
return x

You need to tell Core ML to perform this exact same preprocessing step.

If you did not train the model yourself, but you're using a pretrained model that you
downloaded from the web, you should try to find out what sort of preprocessing is done
on the images before they go into the first neural network layer.

RGB or BGR?

Most training tools will load images in the RGB pixel order. Caffe, however, loads images
as BGR. If your training script uses OpenCV to load images, it probably uses the BGR pixel
order too!

This is no problem, as Core ML will automatically swap the red and blue color channels if
necessary. But you do need to tell it whether your model expects RGB or BGR.

If you get the pixel order wrong, your model may still appear to make reasonable predic-
tions — but the results won’t be as good as they could be! This can be a tricky bug to find.

See chapter Making Sure the Input is Correct for a way to make 100% sure your images are
in the right pixel order.

The available preprocessing options

You specify the preprocessing options in the Python script that converts the model. There
are two different ways to do this, depending on which converter you’re using.

Image Preprocessing 14

Using the unified conversion API from coremltools 4

With the unified converter (TensorFlow, PyTorch), you provide a ct.ImageType object for
each image input. The ImageType constructor takes the following arguments:

* scale: the pixel values will be multiplied by this number.

* bias: this is a list of 3 values that will be added to the RGB values of each pixel. If the
image is grayscale, bias should be a single value.

* color layout: for a color image this is "RGB" or "BGR", for grayscale images it is "G".

* channel first:lets youchoose between NCHW (True) and NHWC (False) channel order.
Usually you can leave out this option and let the converter automatically choose based
on the model.

The trick is to choose appropriate values for these options!

Note: Before coremltools 4, the bias values were supplied as three separate arguments.
With the new API, you need to put these three values into a list, [red bias, green bias,
blue bias], and pass that to the bias argument. For a grayscale image, bias should not be a
list but just a single value (I will call this gray bias).

Using the old converters or coremltools 3

With the old Keras, Caffe, and ONNX converters, the following options are available:

* image scale: the pixel values will be multiplied by this number
* red bias, blue bias, green bias: these will be added to the RGB values of each pixel
* gray bias: like the RGB biases but for grayscale images

* is bgr: you typically need to set this to True for Caffe models, False otherwise

Instead of the channel bias values, the Caffe converter can also use a mean image from a
“binaryproto” file. This is literally the average image over all the images in the training set.

If the model has multiple input images, you can supply a dictionary instead of a single
value, to give each input its own preprocessing options. For example:

Image Preprocessing 15

red bias = { "imagel": -90, "image2": -110 }

How does it work?

The standard formula for normalization of data is:

normalized = (data - mean) / std

First you subtract the mean value, then you divide by the standard deviation of the data.
What Core ML does is similar but not quite the same:

normalized = data*scale + bias

The red bias, blue bias and green bias values act as the normalization mean for the three
color channels (or just the gray bias when the image only has one channel). The difference
is that the mean is subtracted while the bias is added, so if you’re given the mean you need
to flip its sign to get the bias:

red bias = -red _mean
green_bias = -green_mean
blue bias = -blue mean

The scale acts like the standard deviation (std in the first formula), except that it is applied
before the bias is added, while the standard deviation would be applied after the biases are
added.

So if your training script supplies a standard deviation, you can use the scale option for
that, but you have to take the reciprocal:

scale = 1.0 / std

and you also have to apply this to the bias values to make the math work out:

red bias /= std
green_bias /= std
blue bias /= std

Image Preprocessing 16

Note: If you need to scale each color channel individually, you cannot use scale. See the
chapter Using a Different Scale for Each Color Channel.

Usage examples

0-255

If your model expects pixel values in the range 0 — 255, you don’t have to set preprocessing
options. Simply use the default values:

scale

red bias
green_bias
blue bias

i
[cl oMo T

0-1

If your model expects pixel values in the range 0 - 1, you should set:

scale = 1/255.0
red bias =0
green _bias = 0
blue bias =0

The bias values use the default value of 6 and have no effect.

-1...+1

If your model expects pixel values in the range -1 to +1, you should set:

Image Preprocessing 17

2/255.0
-1
-1
-1

scale

red bias
green_bias
blue bias

This first multiplies the pixels by 2/255 , which is the same as dividing by 127.5. Now they
are between 0.0 and 2.0. Then it subtracts 1.0 from each color channel to put the pixel
values between -1.0 and 1.0. This is the normalization used by Keras for ImageNet-based
models.

Caffe models

Models trained with Caffe on the ImageNet dataset will usually subtract the mean RGB
values:

red bias = -123.68
green bias = -116.779
blue bias = -103.939
is bgr = True

Now the pixels are roughly in the range -128 to +128.

Note that Caffe loads images in the BGR pixel order. Your training script may have the mean
color values listed as [103.939, 116.779, 123.68]. The first element in this list is for the blue
channel color, not red. This can be confusing, so pay attention when you copy-paste these
values from your training scripts!

This is also why is_bgr should be set to True.

Sometimes Caffe models also have a standard deviation applied during preprocessing. The
options then become:

0.017

image scale

red bias = -123.68 * 0.017
green bias = -116.779 * 0.017
blue bias = -103.939 * 0.017
is bgr = True

Here, the standard deviation is 58.8, which gives an image scale of 1/58.8 = 0.017. Since
scaling happens before the bias is added, you will need to multiply the red/green/blue bias
by this scaling factor as well.

For Caffe models you can also specify the path to your mean.binaryproto file, if you have
one of those, that contains the average RGB values for the entire image. You would use this
instead of red/green/blue bias.

Image Preprocessing 18

Mean & standard deviation

If you are given a mean for the RGB channels and a standard deviation, you can set the
preprocessing options as follows:

scale =1.0 / std

red bias = -red mean / std
green _bias = -green _mean / std
blue bias = -blue mean / std

Here, the standard deviation is assumed to be the same for each color channel.

Note: The coremltools converters require that the input pixels are in the range 0 - 255.
But some training tools assume that pixels are between 0 and 1. If the mean and standard
deviation are given for the 0 - 1 range, you will need to divide the scale by 255.

Per-image mean and standard deviation
If your model does the following, you can’t use the preprocessing options for this:

normalized = (img - mean(img)) / std(img)

The scale and bias options are assumed to be fixed constants that are the same for every
image. If you want to normalize each image with its own mean and standard deviation
values, look into adding a MeanVarianceNormalizeLayer to the model instead.

Different scaling for each color channel

PyTorch models often do their image preprocessing as follows:

Image Preprocessing 19

def preprocess input(x):
X /= 255.0
mean = [0.485, 0.456, 0.406]
std = [0.229, 0.224, 0.225]
return (x - mean) / std

This uses a separate standard deviation for each color channel. You can approximate this
with the following options:

scale =1.0 / (255.0 * 0.226)
red bias = -0.485 / 0.226
green _bias = -0.456 / 0.226
blue bias = -0.406 / 0.226

However, this isn’t exactly the same thing: it uses an average standard deviation of 0.226
but the original model has a slightly different standard deviation for each color channel.

The proper solution is to insert a “scale layer” at the beginning of the model that can scale
each channel by its own standard deviation. However, this requires model surgery. You
can read more about it in the chapter Using a Different Scale for Each Color Channel.

The model already has its own preprocessing layers

Sometimes the preprocessing calculations are part of the model already. For example, at
the start of the following graph there is a “multiply” layer followed by an “add” layer:

image

alpha = 0.007843137718737125

add n

alpha =-1

The multiply layer multiplies the pixels by the constant value 0.0078431 which is the same
as 1/127.5. The add layer subtracts the constant 1. Now the pixels are in the range -1 to +1.

If your model does something similar, then you should not supply any preprocessing
options to Core ML, otherwise the preprocessing happens twice.

Image Preprocessing 20
Changing the preprocessing for an existing model

To examine and possibly change the preprocessing options from an existing mlmodel, see
the chapter Changing the Image Preprocessing Options.

Part 3: Examining Models

The mlmodel file format is the cornerstone of Core ML. This part of the book dives deep
into how this file format works. Knowing this is important to understand how Core ML
does things, but also how to fix issues with your mlmodel files.

Viewing Models With Netron

An indispensable tool for examining machine learning models is Netron by Lutz Roeder.
It supports many different model formats, including Core ML mlmodels. Netron is open
source, completely free, and runs on macOS, Linux, Windows and even in your web
browser. Download and installation instructions are on the Netron GitHub page°.

N

i)
p

)
O,

NODE PROPERTIES X

convolution (2

name convolution2d_1

Attributes

kernelSize 3,3
stride 2,2
dilationFactor
outputShape 149, 149
outputChannels 32

kernelChannels 3

output = input
nGroups 1

e [e e)

valid {"padding unts":{"bor 100

channels « 32
epsilon = 0.000009999999747378752

hasBias true

output = input

comoor [P EEE

Inputs

input id: image:0

output = input weights kind: Weights

scivaton [0

type: float32[32,3,3,3]
L il

§
[

Netron shows the model on the left and details about the selected layer on the right. You
can also examine the weights and biases for your layers, and even save them to disk as
NumPy arrays. Click on the model’s input or output to see the properties of the mlmodel
file itself, including the Core ML specification version it uses (under “format”).

Using this tool to inspect your models is highly recommended!
Tip: After converting a model to Core ML, open both the original model and the converted

model in Netron. Put them side-by-side to compare how the different layers were translated
to Core ML.

10https://github.com/lutzroeder/netron

22

https://github.com/lutzroeder/netron
https://github.com/lutzroeder/netron

The mlmodel File Format

To use a machine learning model with Core ML it needs to be in the mlmodel format.

The mlmodel file describes the layers in your model, the input and outputs, the class labels,
and any preprocessing that needs to happen on the data. It also contains all the learned
parameters: the weights and biases.

For neural network models that are updatable — models that can be trained on device —
the mlmodel file also contains the loss function, the optimizer, and the training hyperpa-
rameters.

Everything you need to use the model with Core ML is inside this one file.

You can use coremltools to convert your trained models into an mlmodel file. Hopefully
all goes well and you’re good to go! But if your converted model doesn’t work as expected
with Core ML, youw’ll need to examine the mlmodel file and possibly do some surgery on it.
Therefore, it makes sense to learn how mlmodel files work.

Knowing how to read the mlmodel specification also gives you a better idea of what Core
ML can do and what it cannot.

Protobuf files

The mlmodel file format is an open standard that is based on Protocol Buffers, or protobuf,
a method of serializing structured data that was invented by Google. You can compare pro-
tobuf to XML or JSON, but it produces smaller files and is faster. Models from TensorFlow
and Caffe are saved using protobuf formats too.

The mlmodel specification is defined in a number of .proto files. These are text files
containing the schema that is used by protobuf to read and write mlmodel files. (Core ML
uses the proto3 version of the protocol buffers language.)

You can find these proto files inside the coremltools GitHub repo, in the folder mlmodel/-
format!!. There is also a copy in the Turi Create repo??.

Uhttps://github.com/apple/coremltools/tree/master/mlmodel/format
12https://github.com/apple/turicreate/tree/master/src/external/coremltools_wrap/coremltools/mlmodel/format

23

https://github.com/apple/coremltools/tree/master/mlmodel/format
https://github.com/apple/coremltools/tree/master/mlmodel/format
https://github.com/apple/turicreate/tree/master/src/external/coremltools_wrap/coremltools/mlmodel/format
https://github.com/apple/coremltools/tree/master/mlmodel/format
https://github.com/apple/turicreate/tree/master/src/external/coremltools_wrap/coremltools/mlmodel/format

The mlmodel File Format 24

Branch: master v | coremltools / mimodel / format / Create new file =~ Upload files = Find file = History

Sohaib Qureshi Consolidate changes for coremltools 2.0 public release Latest commit f11c43e on Aug 30
[E) ArrayFeatureExtractor.proto Add Linux build support a year ago
[) BayesianProbitRegressor.proto Consolidated changes from 2.0b1 release 4 months ago
[E) categoricalMapping.proto Add Linux build support a year ago
[E) CustomModel.proto Consolidated changes from 2.0b1 release 4 months ago
[£) DataStructures.proto Add Linux build support a year ago
[E) DictVectorizer.proto minor proto sp fixes 9 months ago
[E) FeatureTypes.proto Consolidated changes from 2.0b1 release 4 months ago

Everything that Core ML can do is described by these proto files. If it’s not in here, Core ML
does not support it.

Note: Whenever a new capability is added to Core ML, such as a new neural network layer
type, it is added to these proto files. One way to find out what functionality is supported by
the different versions of Core ML is to look at the commit history for this folder.

Model.proto

The main file in the mlmodel specification is Model.proto. The most important definition
in this file is at the bottom and is also named Model. Here is an excerpt:

message Model {
int32 specificationVersion = 1;
ModelDescription description =
bool isUpdatable = 10;

2;

oneof Type {
PipelineClassifier pipelineClassifier = 200;
PipelineRegressor pipelineRegressor = 201;
Pipeline pipeline = 202;

GLMRegressor glmRegressor = 300;
SupportVectorRegressor supportVectorRegressor = 301;
TreeEnsembleRegressor treeEnsembleRegressor = 302;

The mlmodel File Format 25

The protobuf syntax may take a little getting used to, but it’s not really that difficult once
you understand the terminology.

As with all data serialization formats, the different data structures that can occur in the
serialized files need to be defined somewhere. In protobuf parlance, a data structure is
called a “message”.

The code snippet above defines the Model data structure, which is the top-level message in
the mlmodel format. Model consists of four fields:

* specificationVersion, an integer
* description, a so-called ModelDescription object
* isUpdatable, a boolean

» and Type, a special oneof structure that defines the actual type of the model, such as a
SupportVectorRegressor Or a TreeEnsembleRegressor.

Notice how each field in the message definition consists of a data type, a name, and a
number. This number is called the “tag”. When the mlmodel is written to disk as a binary
file, the message objects are stored as dictionaries. Each field in the serialized message is
a key-value pair where the key is the numeric tag. This is more efficient than storing the
actual field name.

Note: Occasionally when I read through these proto files, I get confused about the tag
values. When it says int32 specificationVersion = 1; that makes it seem you’re assigning
the value 1 to the specification version of the model. But that’s not the case: it just says that
the dictionary key for this field is 1, just like how a dictionary in Swift would use a hash
value for the key. It’s best to simply ignore these tags as you read through the proto files
— they’re just an implementation detail of how protobuf files work and not important for
understanding Core ML.

Digging through the proto files

Most of the fields in the Model message refer to other messages, such as ModelDescription.
You can find this message definition in Model.proto too:

The mlmodel File Format 26

Jx*

*
*
*
*
*
*
*

A description of a model,

consisting of descriptions of its input and output features.
Both regressor and classifier models require the name of the
primary predicted output feature (" “predictedFeatureName'").
Classifier models can specify the output feature containing
probabilities for the predicted classes

(" “predictedProbabilitiesName”).

*/
message ModelDescription {

repeated FeatureDescription input = 1;
repeated FeatureDescription output = 10;

string predictedFeatureName = 11;
string predictedProbabilitiesName = 12;

repeated FeatureDescription trainingInput = 50;

Metadata metadata = 100;

This message has six fields. There is also a comment at the top that describes what these
fields mean. Not everything in the proto files is documented but there are plenty of
comments that help you figure out what’s going on.

The ModelDescription structure contains the data that you see when you open the mlmodel
in Xcode:

* One or more FeatureDescriptions for the model’s inputs. This is a repeated field, which
is an array or list of such objects.

 Likewise, a list of FeatureDescription objects for the model’s outputs.

» There is also a list of FeatureDescription objects for training inputs. These are used
instead of the regular inputs when you’re training the model.

* A predictedFeatureName and a predictedProbabilitiesName field, both strings.

* A Metadata object with additional information about the model.

If you want to know more about what a FeatureDescription Or a Metadata is, look for its
message definition elsewhere in the proto file or in one of the other proto files.

The mlmodel File Format 27
Classifiers and regressors

As the comment at the top of message ModelDescription says, predictedFeatureName must be
the name of the model’s main output for regressor and classifier models. And if the model
is a classifier, predictedProbabilitiesName should be the name of the output that predicts
the probabilities.

Core ML makes a distinction between regressors, classifiers, and “other” models.

For example, there is a NeuralNetworkRegressor model type, a NeuralNetworkClassifier model
type, and a plain NeuralNetwork model type. For classical machine learning models such
as Support Vector Machines or Tree Ensembles, there are also separate regressor and
classifier variants.

This allows Core ML to perform some extra magic that makes it easier to use these models.
If a model is a classifier, and thus fills in the predictedProbabilitiesName field, Core ML
can automatically turn the numbers from that output into a dictionary of class names and
probabilities.

Of course, for this to work the mlmodel must also contain the class names. You can see this
in the message describing the classifier model, for example GLMClassifier looks like this:

message GLMClassifier {
oneof ClasslLabels {

StringVector stringClassLabels = 100;
Int64Vector int64ClasslLabels = 101;

}
}
Note: The fields inside the protobuf messages are always optional. If a model is not a classi-
fier or regressor, simply don’t fill in the predictedFeatureName and predictedProbabilitiesName
fields and they will not appear in the serialized mlmodel. If a field is required by Core ML,
the comments say so.
Supported model types

Core ML can handle several different types of models, such as:

The mlmodel File Format 28

* linear regression and logistic regression
* support vector machines (SVM)
* tree ensembles such as random forests and boosted trees

* neural networks: feed-forward, convolutional, recurrent

k-Nearest Neighbors

Most of these can be used for regression as well as classification. In addition your model can
contain typical ML preprocessing steps like one-hot encoding, feature scaling, imputation
of missing values, and so on.

This kind of high-level overview is all well and good, but to know exactly what Core ML can
do, you have to look inside the proto files. The list of supported model types is in message
Model from Model.proto, which you saw earlier.

Model has a oneof field that lists all the available model types. Here’s the entire list as of Core
ML 3 (it is possible the most recent proto file contains additional model types):

oneof Type {
PipelineClassifier pipelineClassifier = 200;
PipelineRegressor pipelineRegressor = 201;
Pipeline pipeline = 202;

GLMRegressor glmRegressor = 300;
SupportVectorRegressor supportVectorRegressor = 301;
TreeEnsembleRegressor treeEnsembleRegressor = 302;
NeuralNetworkRegressor neuralNetworkRegressor = 303;
BayesianProbitRegressor bayesianProbitRegressor = 304;

GLMClassifier glmClassifier = 400;

SupportVectorClassifier supportVectorClassifier = 401;
TreeEnsembleClassifier treeEnsembleClassifier = 402;
NeuralNetworkClassifier neuralNetworkClassifier = 403;
KNearestNeighborsClassifier kNearestNeighborsClassifier = 404;

NeuralNetwork neuralNetwork = 500;
ItemSimilarityRecommender itemSimilarityRecommender = 501;

CustomModel customModel
LinkedModel linkedModel

555;
556;

OneHotEncoder oneHotEncoder = 600;

Imputer imputer = 601;

FeatureVectorizer featureVectorizer = 602;
DictVectorizer dictVectorizer = 603;

The mlmodel File Format 29

Scaler scaler = 604;

CategoricalMapping categoricalMapping = 606;
Normalizer normalizer = 607;
ArrayFeatureExtractor arrayFeatureExtractor
NonMaximumSuppression nonMaximumSuppression

609;
610;

Identity identity = 900;

CoreMLModels.TextClassifier textClassifier = 2000;

CoreMLModels.WordTagger wordTagger = 2001;

CoreMLModels.VisionFeaturePrint visionFeaturePrint = 2002;
CoreMLModels.SoundAnalysisPreprocessing soundAnalysisPreprocessing = 2003;
CoreMLModels.Gazetteer gazetteer = 2004;

CoreMLModels.WordEmbedding wordEmbedding = 2005;

A oneof declaration means that the message can only include one of these fields. This is like
a switch statement in Swift, where each entry is one of the cases.

I want to highlight some of the model types:

* Identity is just for testing. It simply returns the inputs as the outputs.

* GLMRegressor and GLMClassifier are for linear regression and logistic regression, re-
spectively. These models are created by the scikit-learn converter.

* SupportVectorRegressor and SupportVectorClassifier are — what else? — for support
vector machines. These models are from LIBSVM or scikit-learn.

* TreeEnsembleRegressor and TreeEnsembleClassifier are for decision trees, random forests,
and boosted trees. These models are from XGBoost or scikit-learn.

» There are three types of neural nets: NeuralNetworkRegressor, NeuralNetworkClassifier,
and a generic NeuralNetwork.

* KNearestNeighborsClassifierisespecially useful for building models that can be trained
on-device on data provided by the user.

* CustomModel is for wrapping your own algorithms into an mlmodel. When using a cus-
tom model, the mlmodel file is only a container for your model’s learned parameters
and any metadata. It doesn’t know anything about the actual model algorithm. See
also the chapter on custom models.

* The CoreMLModels are the model types that you can train with Create ML or Turi Create.

There are also a number of model types for feature engineering tasks (most of these are
used with scikit-learn):

The mlmodel File Format 30

* OneHotEncoder and CategoricalMapping: convert categorical features into numbers
* FeatureVectorizer and DictVectorizer: for converting features to arrays

e Imputer: fills in missing values in the data

* Scaler and Normalizer: for normalizing the input data

Also worth mentioning is a model type that is specifically meant for post-processing the
output data:

* NonMaximumSuppression: filters bounding box predictions from object detection models

Usually you’d do something like one-hot encoding or normalizing before passing the data to
a classifier model, and non-maximum suppression is done after running an object detection
model. So it may seem a little weird that these things are considered to be separate models
by Core ML — especially because there is only a single Model object in the mlmodel file.

Fear not! This is what the Pipeline model type is for. A pipeline lets you combine multiple
models as if they are one model. The Pipeline message is defined as follows:

message Pipeline {
repeated Model models
repeated string names

([
N =

A pipeline is nothing more than a list of Model objects, letting you nest multiple Model objects
inside a single mlmodel file. The output of one model is the input to the next.

For example, when you train an object detection model with Turi Create, it produces
an mlmodel file whose model is of type Pipeline. The first model in this pipeline is a
NeuralNetwork that implements YOLO and predicts a fixed number of bounding boxes. The
second model in this pipeline is NonMaximumSuppression, which filters the predicted bounding
boxes and only keeps the best ones.

Core ML 3 also introduced the concept of a LinkedModel, a placeholder inside a pipeline
that refers to another mlmodel file. This allows you to re-use the same model in multiple
pipelines, which is more efficient than giving each pipeline an identical copy.

Read more about pipelines in the chapter Building Pipeline Models.

The mlmodel File Format 31

Note: For a full description of what each of these model types does, look at their corre-
sponding proto files to see what kind of functionality they support. The documentation
isn’t always perfect, but you should be able to get a pretty good idea from the proto file.
Bonus tip: Also look at the source code for the different converters from the coremltools
repo to see how they use these model types.

Neural networks

If you’re interested in using Core ML for deep learning, check out NeuralNetwork.proto
to see all the neural network layers you can use. This is by far the largest proto file from
the mlmodel specification. Fortunately, it has extensive documentation.

The main data structure for a neural network model is:

message NeuralNetwork {
repeated NeuralNetworkLayer layers = 1;
repeated NeuralNetworkPreprocessing preprocessing = 2;

NeuralNetworkMultiArrayShapeMapping arrayInputShapeMapping = 5;
NeuralNetworkImageShapeMapping imageInputShapeMapping = 6;
NetworkUpdateParameters updateParams = 10;

This contains a list (repeated) of the layers, as well as a list of NeuralNetworkPreprocessing
definitions, one for each input in the model. Specification version 4 added the other three
fields, which allow for dynamic tensor shapes and on-device training, respectively.

Want to know what sort of preprocessing is available in Core ML? Look at the message
definition:

message NeuralNetworkPreprocessing {
string featureName = 1;
oneof preprocessor {
NeuralNetworkImageScaler scaler = 10;
NeuralNetworkMeanImage meanImage = 11;

The featureName is the name of the model’s input to which this preprocessing gets applied.
You have the choice between a NeuralNetworkImageScaler Or a NeuralNetworkMeanImage. Let’s
look at the scaler to see what that does:

The mlmodel File Format 32

message NeuralNetworkImageScaler {
float channelScale = 10;
float blueBias = 20;
float greenBias = 21;
float redBias = 22;
float grayBias = 30;

These are the same preprocessing options that you supply to coremltools when you convert
the model. Now you know that these are stored inside a NeuralNetworkImageScaler object,
inside a NeuralNetworkPreprocessing object, inside a NeuralNework object, inside a Model
object, inside the mlmodel file. Phew!

The definition for NeuralNetworkLayer is pretty big, because it encompasses all the possible
layer types:

message NeuralNetworkLayer {
string name = 1;
repeated string input = 2;
repeated string output = 3;

repeated Tensor inputTensor = 4;
repeated Tensor outputTensor = 5;
bool isUpdatable = 10;

oneof layer {
ConvolutionLayerParams convolution = 100;
PoolinglLayerParams pooling = 120;
ActivationParams activation = 130;
InnerProductlLayerParams innerProduct = 140;
EmbeddinglLayerParams embedding = 150;
/* and many more... */

As you can see, in Core ML a neural network layer has a name, one or more inputs, one or
more outputs, and a layer type (from the oneof). As of Core ML 3, layers can also be marked
as being updatable for on-device training.

The inputs and outputs are strings with the output and input names of the layers that are
connected to this one. Most layers will have just one input and one output. A “concat” layer
can have multiple inputs; a “split” layer will produce multiple outputs.

Using these three fields — name, input and output — you can describe the complete graph of
the layers in the neural network.

To know more about a particular layer type, check out its message definition.

The mlmodel File Format 33

Note that in the mlmodel specification, an activation function is considered to be a separate
layer. To see the supported activation functions, look at ActivationParams:

message ActivationParams {
oneof NonlinearityType {
ActivationLinear linear = 5;
ActivationRelLU RelLU = 10;
ActivationLeakyReLU leakyRelLU = 15;
ActivationThresholdedRelLU thresholdedRelLU = 20;

And so on... everything you want to know about Core ML’s neural network layers is inside
this proto file. I suggest reading through it, there are a lot of comments explaining how
everything works.

Tip: I wrote a blog post'3 about everything that’s new in Core ML 3. This also describes the
available model types and neural network layer types in more detail, so be sure to check
that out. See also the 2020 update!.

L3https://machinethink.net/blog/new-in-coreml3/
14https://machinethink.net/blog/new-in-apple-machine-learning-2020/

https://machinethink.net/blog/new-in-coreml3/
https://machinethink.net/blog/new-in-apple-machine-learning-2020/
https://machinethink.net/blog/new-in-coreml3/
https://machinethink.net/blog/new-in-apple-machine-learning-2020/

Using the Spec to Edit Models

After you convert a model to Core ML format using coremltools, you get an MLModel object
from the coremltools.models module.

You can also create an MLModel object by loading an mlmodel file:

import coremltools as ct
model = ct.models.MLModel("YourModel.mlmodel")

The coremltools.models.MLModel class provides a very basic interface to using Core ML from
Python. You can use it to change the model’s metadata and make predictions. (Note that this
is not the same as the MLModel class from CoreML.framework. We’re in Python land here.)

That’s nice, but to make more extensive changes to the model definition you need the spec,
which contains the protobuf objects that describe the model’s properties in detail. With the
spec you can add new layers, remove layers, rename inputs and outputs, and change the
model in pretty much any way you please.

The Python MLModel object is really just a very simple wrapper around such a spec object.
For most model surgery tasks, you’ll need to use the spec directly.

Tip: I prefer to work interactively from the Python REPL when dealing with spec objects. I
recommend using IPython!> or even a Jupyter notebook?6.

Getting the spec

There are a few ways to get the spec object. You can get it from the MLModel:

spec = model.get spec()

This creates a deep copy of the spec, so changing anything in this copy does not affect the
existing MLModel object.

If you don’t want to use a copy but directly make changes to the MLModel object, you can do:

I5https://ipython.readthedocs.io/en/stable/
16https://jupyter.org

34

https://ipython.readthedocs.io/en/stable/
https://jupyter.org/
https://ipython.readthedocs.io/en/stable/
https://jupyter.org/

Using the Spec to Edit Models 35

spec = model. spec

In Python, symbols starting with an underscore are private. You're not really supposed to
use _spec directly, but there’s also no one stopping you. Any changes you make to spec are
now immediately reflected in the MLModel. (Although if you want to make predictions with
the changed spec, you’ll need to create a new MLModel instance, which runs the Core ML
compiler again.)

The third way to get a spec is to skip MLModel altogether and load it directly:

spec = ct.utils.load spec("YourModel.mlmodel")

A quick way to make sure the spec was loaded correctly is to print the model description:

print(spec.description)

This prints out the model’s metadata as well as the descriptions of its inputs and outputs.
(This is the contents of the ModelDesciption message from Model.proto.)

Tip: don’t do print(spec). That will print out the entire model, including all of its learned
parameters. You’ll regret it!

Making changes using the protobuf API

The spec consists of protobuf objects. To see this, run the following command from the
Python REPL:

type(spec)

This prints Model pb2.Model. The pb2 suffix means this is an object that is described by the
Model.proto file.

All the protobuf “message” objects in the spec have similar types. For example, writing
type(spec.description) prints out Model pb2.ModelDescription, and so on. These types liter-
ally correspond to the definitions in the proto files. Therefore, understanding the mlmodel
specification is important in order to work with the spec (see the previous chapter).

Using the Spec to Edit Models 36

Because these are all protobuf objects, you will need to use the Python protobuf API to
manipulate them. This API is actually quite convenient to use, but not always obvious if
you’re new to it.

To change a field that is an integer or string, you can simply assign it a new value. For
example, the human-readable description of the model that is shown in Xcode:

spec.description.metadata.shortDescription = "This is my awesome model!"

If you don’t want to include such a description, simply set it to the empty string "". You can
also reset the field to its default value:

spec.description.metadata.ClearField("shortDescription")

All the fields in the spec objects are optional. Numeric fields and string fields will always
have a default value (0 or the empty string) but fields that are messages may not be present
at all. To inspect if the model has a certain message, you can write:

spec.description.HasField("metadata")

If a field is a oneof, you can use WhichOneof () to figure out which one it is (notice the spelling
of oneof!). Recall that spec is an instance of the Model message that has a field oneof Type
that determines what sort of machine learning model is in the mlmodel file.

print(spec.WhichOneof ("Type"))

This may print something like neuralNetworkClassifier. You can look at the properties of
this object by writing:

spec.neuralNetworkClassifier.someProperty

Where someProperty is a field from the message type NeuralNetworkClassifier. (Don’t try to
print out all of spec.neuralNetworkClassifier as it dumps the contents of all the layers and
their learned parameters.)

If you write spec.neuralNetwork Or spec.treeEnsembleClassifier or any of the other model
type names, you’ll get None as the answer (or just nothing) because those are not the correct
type for this particular mlmodel. The name you use, in this case spec.neuralNetworkClassifier,
has to match the result from wWhichOneof ("Type").

Using the Spec to Edit Models 37

Note: type(spec.neuralNetworkClassifier) is NeuralNetwork pb2.NeuralNetworkClassifier be-
cause this message definition is located in the file NeuralNetwork.proto.

The NeuralNetworkClassifier has a repeated field called layers that consists of zero or more
NeuralNetworkLayer objects. This works like a list and so you can iterate through it:

for layer in spec.neuralNetworkClassifier.layers:
print(layer.name)

Or if you just want to look at the convolution layers:

for layer in spec.neuralNetworkClassifier.layers:
if layer.HasField("convolution"):
print(layer.name)

Or equivalently:

for layer in spec.neuralNetworkClassifier.layers:
if layer.WhichOneof("layer") == "convolution":
print(layer.name)

I hope you’re following along with NeuralNetwork.proto to check that this makes sense!

To look at a specific layer you can write:

layer = spec.neuralNetworkClassifier.layers[0]
print("name", layer.name)

print("inputs", layer.input)

print("outputs", layer.output)

Because input and output are repeated fields, you can treat them as Python lists. For
example, to add a second input to the layer:

layer.input.append("another input")
print(len(layer.input))

Of course, if you now save the spec to an mlmodel file, Xcode won’t be able toload it because
this new input isn’t defined anywhere. So let’s delete it again:

Using the Spec to Edit Models 38
del layer.input[-1]

You can also add new layers. But because layers are message objects, you cannot write
append () like you just did. That only works for simple types like strings and numbers. You
first have to add a new layer object:

new_layer = spec.neuralNetworkClassifier.layers.add()

This new_layer object is of type NeuralNetwork pb2.NeuralNetworkLayer butit doesn’t have any
contents yet. To give it something to do, simply assign values to its fields:

new_layer.name = "My new layer"
new_layer.input.append("old output")
new_layer.output.append("new output")

Thisinserts the new layer after the layer named "old_output", which now becomes the input
to this new layer.

Note: You can’t write new_layer.input = ["old_output"]. That is an error with the Python
protobuf API. Since these are not regular Python lists but protobuf objects, the API is
sometimes a bit different than what you may be used to.

The new layer doesn’t have a type yet. This is where the protobuf API is a little weird. Let’s
say you want to make this a linear activation layer. According to the proto file, activation
layers are described by the ActivationParams message.

Unlike what you might perhaps expect, you don’t create a new ActivationParams object and
then assign it to the layer. This doesn’t work:

new layer.activation = ct.proto.NeuralNetwork pb2.ActivationParams()

Instead, you simply write something like:

new layer.activation.linear.alpha =1

By accessing the .activation field you’re telling protobuf you want to this layer to have an
ActivationParams object. By writing . linear you’re saying it should be an ActivationLinear.
And by accessing the .alpha field you actually make all of this happen.

If you now print out the properties of new layer, you should see the following:

Using the Spec to Edit Models 39

name: "My new layer"
input: "old output"
output: "new output"
activation {

linear {

alpha: 1

}

}

Sometimes messages don’t have any fields, such as ActivationReLU. To change the activation
function of this layer to ReLU, you have to write the following instead:

new layer.activation.ReLU.SetInParent()

Or use the following trick:

layer.activation.RelLU.MergeFromString(b"")

If you wanted to change this layer to a completely different type, write something like this:

new_layer.innerProduct.inputChannels = 100

Now this layer magically becomes an inner product layer — what Core ML calls a fully-
connected layer — of type NeuralNetwork pb2.InnerProductLayerParams.

Note: In the proto file for NeuralNetworkLayer the layer types are defined inside the oneof
layer declaration. But note that you cannot use the new_layer.layer field to get its layer
type. You always access the thing from the oneof directly by its name, such as activation or
innerProduct. The name of the oneof itself is only used with WhichOneof ().

It should be obvious by now that you really need to have the proto files handy to know what
fields and messages you can use here! By the way, to explore what these protobuf objects
from the proto files can do, you can use the dir() command in the Python REPL:

dir(ct.proto.Model pb2.Model)

This is not as easy to understand as the actual proto files, but it can be useful to quickly
look up what a certain field is called.

To remove a layer, simply delete it. For example, to remove the layer you just added:

Using the Spec to Edit Models 40

del spec.neuralNetworkClassifier.layers[-1]

This was only a short introduction to the most common things you can do with the Python
protobuf API. For the full story, check out the documentation!’. In the next chapters you’ll
be using these techniques for all kinds of advanced model surgery.

Saving the new model

Once you’re done making your changes to the spec, you can write everything to an mlmodel
file again:

ct.utils.save spec(spec, "YourNewModel.mlmodel")
Tip: Use a different filename. It’s really easy to mess something up when you edit the spec

by hand and you don’t want to overwrite your original mlmodel file!

If you used model. spec to get the spec, you can simply save the MLModel object:

model.save("YourNewModel.mlmodel")

Note: this doesn’t work when you used model.get_spec() since that created a copy.

You can also make a new MLModel object from the spec and then save the model:

new _model = ct.models.MLModel(spec)
new_model.save("YourNewModel.mlmodel")

Personally, I prefer to load and save specs directly without using MLModel unless I also want
to make predictions with the model from Python. Everything else is just as easy with just
the spec.

Note: Because the mlmodel format is based on protobuf, you can load, save, and change
mlmodel files with any language that supports protobuf. That means you don’t necessarily
need to use Python to create new mlmodel files — you can even use Swift! See the chapter
Using Protobuf Without coremltools for more details.

17https://developers.google.com/protocol-buffers/docs/reference/python-generated

https://developers.google.com/protocol-buffers/docs/reference/python-generated
https://developers.google.com/protocol-buffers/docs/reference/python-generated

Part 4: Model Surgery

Model surgery is the act of changing an mlmodel after it has been converted. This is useful
for cleaning up a model after conversion or to add missing functionality.

Saving the Weights as 16-bit Floats

Neural networks often have millions of learned parameters. When you convert a model to
Core ML, these parameters are saved as 32-bit floats or 4 bytes per parameter.

That means a model with 10 million parameters will take up 40 MB in your app bundle.
That’s 40 additional megabytes that users of your app will have to download. And 10 million
parameters isn’t really that much yet — there are models with 50 or even 100 million
parameters.

With a bit of model surgery it’s easy to change the weights and biases to be 16-bit floats
instead. This cuts the storage size of your model in half.

Note: This is a feature of mlmodel version 2, supported by iOS 11.2 and macOS 10.13.2.

To tell whether a model is using 16-bit weights or the full 32-bit weights, you can look at
the weights field from any of your layers. The weight values are stored either in floatvalue,
floatl6Value, Or rawValue. For example, for a convolution layer:

def examine weights(weights):
if len(weights.floatValue) > 0:
print("Weights are 32-bit")
elif len(weights.floatl6Value) > 0:
print("Weights are 16-bit")
elif len(weights.rawValue) > 0:
print("Weights are quantized or custom layer")
else:
print("This layer has no weights")

nn = get _nn(spec)

examine weights(nn.layers[i].convolution.weights)

To convert the weights for the entire model to 16-bit floats, you can use the function
quantize weights() from the quantization utils module. This works on all neural network-
type models and also on pipeline models.

42

Saving the Weights as 16-bit Floats 43

Note: This function used to be named convert neural network spec weights to fpl6() but
this is deprecated as of coremltools 4.

Here is a handy utility script that you can use to convert an existing model to 16-bit:

import sys
import coremltools as ct
from coremltools.models.neural_network import quantization utils

if len(sys.argv) != 3:
print("USAGE: %s <input mlmodel> <output mlmodel>" % sys.argv[0])
sys.exit(1l)

input _model path = sys.argv[1]
output model path = sys.argv[2]

model = ct.models.MLModel(input model path)
model fpl6 = quantization utils.quantize weights(model, nbits=16)
model fpl6.save(output model path)

Save this script as convert_to_float16.py and then invoke it as follows:
$ python3 convert to floatl6.py input.mlmodel output.mlmodel

I tried this script on a few models from Apple’s developer site'®. Here are the file sizes of
the original models and saved with 16-bit floats:

Model name 32-bit weights 16-bit weights
SqueezeNet.mlmodel 4971516 2500504
MobileNet.mlmodel 17136858 8585292
Inceptionv3.mlmodel 94704130 47382082
ResNet50.mlmodel 102586628 51313154

As you can tell from these results, the 16-bit version is indeed 50% of the original size.

Keep in mind that 32-bit or 16-bit is only for the way your weights are stored inside the
mlmodel file. What happens during runtime is independent of the storage method! The
runtime data type for the weights depends on the hardware that is running the model:

» CPU: uses 32-bit weights, even if the model is saved as 16-bit.

18https://developer.apple.com/machine-learning/models/

https://developer.apple.com/machine-learning/models/
https://developer.apple.com/machine-learning/models/

Saving the Weights as 16-bit Floats 44

* GPU: uses 16-bit weights, even if the model is saved as 32-bit.

* Neural Engine: who knows?

I think it’s a good idea to always save your models using 16-bit floats. You do lose a bit of
precision when compared to the full 32-bit numbers the model was originally trained with,
but on average these errors cancel out and it shouldn’t make the model’s predictions any
worse.

Part 5: Inside the App

Learn how to make the most out of the APIs from the Core ML and Vision frameworks.

The Neural Engine

The first Neural Engine was introduced with the A11 Bionic processor in the iPhone X, but
Core ML does not make use of it on those devices (apparently it’s just for Face ID).

The A12 and A12X processors have a new, more powerful Neural Engine that can do 5
trillion operations per second. Apple claims that the A12’s Neural Engine makes Core ML
up to 9 times faster at 1/10th the power. I have indeed seen massive speed boosts on the
iPhone XS but only with certain types of models.

The A13 chips in the iPhone 11 and later models appears to have much the same Neural
Engine but it’s a bit faster and more energy efficient.

Not a lot is known about the Neural Engine, or ANE as it’s also called, but here is what we
do know:

» Core ML automatically runs your models on the Neural Engine when it can. This frees
up the GPU to do other work.

» There is no public API for using the Neural Engine. You can only use it through Core
ML. (There are private frameworks but these are obviously not documented and you
can’t use them in App Store apps.)

« If you use custom layers anywhere in your model, even if only at the beginning or at
the very end, the model may not fully run on the Neural Engine. As of yet, there is
no method in MLCustomLayer that you can implement to make your custom layer work
with the Neural Engine.

* The Neural Engine seems to be optimized for large matrix multiplications. A model
such as TinyYOLO, which consists of a small number of heavy convolution layers, is
quite slow on the GPU but extremely fast on the Neural Engine. On the other hand, a
model such as MobileNetV2 + SSDLite, which has more layers but that do less work, is
very fast on the GPU but slower on the Neural Engine.

» Not all layer types are supported. For example, if your model has RNN layers such
as LSTM or GRU, it won’t run on the Neural Engine. The same is true for dilated
convolutions, and possibly other layer types as well.

It’s hard to exactly understand and explain some of these results since there are no profiling
tools for the Neural Engine, nor any documentation about how this chip works. (Also, Core
ML can be a bit temperamental, making it hard to get consistent measurements.)

46

The Neural Engine 47

In any case, it appears that the design tradeoffs for efficient models are different for the
Neural Engine than for the GPU, but figuring them out so far has been mostly trial-and-
error.

Tip: To prevent a model from running on the Neural Engine, you can set the computeUnits
field from MLModelConfiguration to .cpu Or .cpuAndGPU. To include the Neural Engine, use
computeUnits = .all.

I've started a community project on GitHub to document the Neural Engine'?, so check that
out for the latest insights!

D9https://github.com/hollance/neural-engine

https://github.com/hollance/neural-engine
https://github.com/hollance/neural-engine

Transposing an MLMultiArray

Suppose you have an MLMultiArray with the shape (100, 200, 4) but you need to pass this
into a function that expects the shape (4, 100, 200). In other words, the last dimension must
become the first.

This is a common occurrence during training. NumPy and TensorFlow offer a transpose()
function for this, while PyTorch calls it permute().

Unlike reshaping, which only changes how you view the dimensions but doesn’t change
the data, transposing or permuting will literally move around the bytes in the array.

For example, to convert the (100, 200, 4) array into (4, 100, 200) you would call:

let transposedArray = multiArray.transpose(to: [2, 0, 1])

The notation [2, 0, 1] means that dimension 2 moves to the front and the other two

dimensions will shift one position towards the back.

Unfortunately, MLMultiArray has no API for doing this, so you’ll have to write it yourself.
Tip: Rather than doing this in Swift, you can also add a new layer at the end of the mlmodel
that rearranges the data. That way Core ML will automatically handle the permutation and

you don’t have to worry about any of it. The type of layer to add is PermuteLayerParams. See
NeuralNetwork.proto for more details.

To move the last dimension to the front as in the above example, the transpose routine
would look like this in pseudocode:

48

Transposing an MLMultiArray 49

for h in 0..<height {
for w in 0..<width {
for ¢ in 0..<channels {
let srcIndex = h*srcStrides[0] + w*srcStrides[1l] + c*srcStrides[2]
let dstIndex = c*dstStrides[0] + h*dstStrides[1l] + w*dstStrides[2]
dstPtr[dstIndex] = srcPtr[srcIndex]
}
}
}

You read the value using the source strides and write it using the destination strides. Pretty
straightforward. However, this code has a couple of limitations:

« It assumes the array will always have three dimensions.
« It always swaps (h, w, ¢) to (c, h, w), so it can only transpose one way.

The code for a transpose function that can handle any number of dimensions and any
possible permutation order is more complex. Here is one way to write it:

extension MLMultiArray {
@nonobjc public func transposed(to order: [Int]) throws -> MLMultiArray {
let ndim = order.count
precondition(ndim == strides.count)

let newShape
let newArray

shape.indices.map { shape[order[$0]] }
try MLMultiArray(shape: newShape, dataType: self.dataType)

let srcPtr
let dstPtr

UnsafeMutablePointer<Double>(OpaquePointer(dataPointer))
UnsafeMutablePointer<Double>(0paquePointer(newArray.dataPointer))

This first swaps around the dimensions so they are in the new order and then creates a
MLMultiArray object with that new shape. You also grab the pointers to the memory of both
arrays.

Note: This function only works with multi-arrays that have the datatype .double. To support
.float32 or .int32 you need to change the type of the UnsafeMutablePointer.

Inside the loop that will copy the values from the original to the new array, you need to
compute the source index for reading from and the destination index for writing to. The
problem is that you don’t know beforehand how many dimensions the array will have, and
S0 you can’t use multiple nested loops.

Transposing an MLMultiArray 50

Instead, yow’ll be using a single loop that treats the multi-arrays as being one-dimensional.
You will need to map that scalar index to the different dimensions in both the source and
destination array. For that, you first define some variables:

let srcShape = shape.map { $0.intValue }
let dstStride = newArray.strides.map { $0.intValue }
var idx = [Int](repeating: 0, count: ndim)

The shape and strides are NSNumbers, so to gain a bit of speed you turn these into plain Int
values. The idx array is a list of integer indices, one for every dimension. This is how you’ll
keep track of where you’re reading inside the source array. Initially, these values are all 0.

Next up is the actual loop:

for j in 0..<count {
var dstIndex = 0
for i in 0..<ndim {
dstIndex += idx[order[i]] * dstStride[i]
}

dstPtr[dstIndex] = srcPtr[j]

It’s a straight for loop that goes from 0 to the number of elements in the array. The source
index that you use for reading is simply j.

The destination index must be composed of the destination strides and the permuted
indices from the idx array. This is how the reading position in the source array is mapped
to the writing position in the destination array. And then you simply copy the value from
the source into the destination.

Finally, you need to update the values of idx to move them ahead to the next reading
position. There are two ways to do this: 1) divide j by the source strides using division
and the remainder, 2) simply increment the values in idx. Because dividing is relatively
slow, youw’ll choose option number two here:

Transposing an MLMultiArray 51

var i = ndim - 1
idx[i] += 1
while i > 0 && idx[i] >= srcShape[i] {

idx[i] = ©
idx[i - 1] += 1
i-=1
}
}
return newArray

}
}

Let’s say the source array has three dimensions of sizes (100, 200, 4). The value of j will go
from 0 to 80000 because that’s how many elements there are (i.e. 100 x 200 x 4).

Initially, idx is [0, 6, 0]. Every iteration of the loop you increment the last element of idx,
so after the first iteration itis [0, 0, 1].

After 4 iterations, idx is [0, 0, 4]. But that is one position beyond the length of this last
dimension in the source array. Now you roll over that last index and increment the second-
to-last index instead, so that idx becomes [0, 1, 0].

After another 4 iterations, idx will be [0, 2, 0], and so on. It works like a clock, where the
minute is incremented when seconds reach 60, and the hour is incremented when minutes
reach 60.

And that’s it for a basic transpose routine. This code isn’t particularly fast, especially for
large arrays, but it’s useful for debugging and testing things.

Note: For certain special cases you can use the vimage framework to do very fast permu-
tations of the dimensions. For example, vImageConvert PlanarFtoARGBFFFF() will convert a
multi-array of shape (4, height, width) to (height, width, 4). There is also vImageConvert -
PlanarFtoRGBFFF() for when you have 3 channels instead of 4. These functions will only
work for MLMultiArrays of type .float32 but they’re much faster than writing your own
code.

Part 6: Advanced Topics

Become a Core ML pro with these advanced chapters.

Working With Video

When working with AvCaptureSession to capture video from the live camera feed, your app
receives CMSampleBuffer objects in the following delegate method:

public func captureOutput(_ output: AVCaptureQutput,
didOutput sampleBuffer: CMSampleBuffer,
from connection: AVCaptureConnection) {
if let pixelBuffer = CMSampleBufferGetImageBuffer(sampleBuffer) {
/* make a prediction using the pixel buffer */
}
}

When working with ARKit to capture live video, your app receives ARFrame objects in the
following callback:

func session(_ session: ARSession, didUpdate frame: ARFrame) {
if case .normal = frame.camera.trackingState {
let pixelBuffer = frame.capturedImage
/* make a prediction using the pixel buffer */
}
}

And when using an AVAssetReader to read video frames from a file, your app receives
CMSampleBuffer objects in a loop:

while assetReader.status == .reading {
autoreleasepool {
if let sampleBuffer = readerTrackOutput.copyNextSampleBuffer(),
let pixelBuffer = CMSampleBufferGetImageBuffer(sampleBuffer) {
/* make a prediction using the pixel buffer */
}
}
}

What all these methods have in common is that they will receive many CvPixelBuffer
objects per second. Your app needs to decide how to handle all those pixel buffers.

» If the Core ML or Vision prediction for the previous frame is still running when a new
frame arrives, you will need to ignore this new frame in a real-time setting. Your app
simply isn’t able to keep up with the FPS of the live camera feed.

33

Working With Video 54

* When processing frames offline — such as when reading from an mp4 file — you will
need to temporarily block reading until the model is ready for the next frame.

 To get higher throughput, you can already schedule the next Core ML or Vision request
while the previous one is still running. That’s because some part of the model will run
on the CPU and some part on the GPU. If the CPU is just sitting there waiting for the
GPU to complete, it’s more efficient to use that idle time to already prepare the next
request. However, you want to limit this to two or three requests at most, or youw’ll
eventually end up with a huge backlog of unprocessed pixel buffers.

Exactly how to handle this situation depends on the demands of your app. This chapter
shows a few different approaches.

Note: When using live video, you don’t want to hang on to any given pixel buffer for too
long. The camera only has a small, fixed pool of buffers that it reuses over and over. If
you’re holding on to all these buffers, waiting for them to be processed by Core ML at some
point in the future, the camera’s buffer pool will run out of available buffers and it has
nowhere left to store the next frame. That’s asking for trouble. You want to recycle the
buffers quickly.

Blocking the video thread

The easiest solution is to block the video thread while the model is busy making a
prediction. In the delegate method, do the following:

public func captureOutput(_ output: AVCaptureQutput,
didOutput sampleBuffer: CMSampleBuffer,
from connection: AVCaptureConnection) {
if let pixelBuffer = CMSampleBufferGetImageBuffer(sampleBuffer) {
let resizedPixelBuffer = ...
if let output = try? model.prediction(image: resizedPixelBuffer) {
/* do something with the output */
}
}
}

Core ML’s model.prediction(...) method will block the current thread until the result is
available. Likewise for the perform() method from Vision’s VNImageRequestHandler.

Working With Video 55

With this approach, you make the video capture thread wait until Core ML is done. That’s
fine when the model is really fast and finishes before the next frame arrives from the
camera.

But what happens when the model is slower than the camera? In that case, AvCaptureSession
will not be able to call captureOutput(:didOutput:from:) again on the video capture thread,
because that thread is currently occupied with running the Core ML model.

Fortunately, AvCaptureSession is smart: if the video capture thread is blocked for too long,
AVCaptureSession will automatically drop the next frame. When that happens, instead of
captureOutput(_:didOutput:from:), the delegate method captureOutput(:didDrop:from:) is
called to inform you that your app was too slow.

Note: The setting for this is alwaysDiscardsLateVideoFrames from AvCaptureVideoDataOutput.

All the logic for dropping the frames happens in AvCaptureSession and so you don’t have to
worry about it. Simply run the model directly on the video capture thread, so that it blocks
this thread while Core ML is working. (This appears to be true for ARKit too, which uses
AVCaptureSession behind the scenes.)

In most apps the camera will run at 30 FPS. If the model takes longer than 1/30th of a second,
or 33 ms, then not all video frames can be delivered. Let’s say the model takes 50 ms instead.
The approach taken here will drop every other frame and model.prediction(...) will only
be called 15 times per second instead of 30.

This also highlights the drawback of this simple method: a model that takes 50 ms can ac-
tually run at 20 FPS instead of 15. This is also true for offline processing with AVAssetReader
— if you can get this model to process 20 frames per second, it’s done in 3/4th the time. To
get the maximum amount of throughput, you’ll need to be a bit more clever.

Running the model on a separate thread

One way to try and be more clever is to not run the prediction on the video capture
thread, but on a separate thread or dispatch queue. You might be tempted to wrap it in
a DispatchQueue.async:

Working With Video 56

public func captureOutput(_ output: AVCaptureOutput,

didOutput sampleBuffer: CMSampleBuffer,
from connection: AVCaptureConnection) {
if let pixelBuffer = CMSampleBufferGetImageBuffer(sampleBuffer) {
DispatchQueue.global(qgos: .userInitiated).async {
let resizedPixelBuffer = ...
if let output = try? model.prediction(image: resizedPixelBuffer) {
/* do something with the output */
}
}
}
}

This is a bad idea! Now model.prediction(...), or the VNImageRequestHandler.perform()
method if you’re using Vision, will no longer block the video capture thread. And when
this thread is not blocked, AvCaptureSession will no longer automatically drop frames when
your app is too slow.

For every new frame that arrives from the camera — 30 times per second — this code will
schedule another Core ML prediction on the dispatch queue. If the model is slower than 33
ms, you’ll quickly build up a huge backlog of unprocessed requests, as Core ML won’t be
able to keep up.

Eventually, AvCaptureSession will start dropping frames anyway. This happens because the
global DispatchQueue only has so many free threads to run all the Core ML requests. At some
point all your CPU cores will be in use and there is no thread that is free to handle the next
incoming video frame.

Alternatively, because of the backlog of pending requests, AvCaptureSession can eventually
run out of cvPixelBuffer objects and shut down. Not good. :-(

Another problem with having a backlog is that it increases the latency of the requests.
Let’s say the first 10 frames will all get scheduled on the DispatchQueue, then the next 60
frames are dropped because your CPU is completely maxed out and is slowly working its
way through that backlog of the first ten frames. By the time you get the results of frame
number 10, it’s already two seconds later.

If your model isn’t fast enough to keep up with the camera, it’s better to drop more frames
than to get way behind and deliver results for frames that are no longer relevant.

The solution here is to block the video capture thread again, but now manually. The
simplest approach is to ignore any new frames — i.e. to drop them by hand — until Core
ML is free for work again. First, you need to add a new instance variable:

Working With Video 57

var currentBuffer: CVPixelBuffer?

Then in your video capture delegate method do the following:

public func captureOutput(_ output: AVCaptureQutput,
didOutput sampleBuffer: CMSampleBuffer,
from connection: AVCaptureConnection) {
if currentBuffer == nil,
let pixelBuffer = CMSampleBufferGetImageBuffer(sampleBuffer) {
currentBuffer = pixelBuffer
DispatchQueue.global(qos: .userInitiated).async {
let resizedPixelBuffer = ...
if let output = try? model.prediction(image: resizedPixelBuffer) {
/* do something with the output */
}

self.currentBuffer = nil

The new frame will only be processed by Core ML when currentBuffer is nil, i.e. when Core
ML is not already doing anything. Otherwise, nothing happens.

With this method you still only do a single prediction at a time, but now you run it on a
thread of your own choosing. Using a different thread in this manner actually improves
the performance by quite a bit!

Using a semaphore

The above method already works quite well, butit’s not 100% thread-safe. The currentBuffer
variable is written to from different threads: the video capture thread but also any threads
that belong to the DispatchQueue. There’s a small but not unlikely chance that these writes
might interfere with each other.

You could solve this by locking the currentBuffer variable before reading or writing it, but
there’s another solution that neatly avoids this issue, and that is to use a semaphore.

First, create the semaphore object:

let semaphore = DispatchSemaphore(value: 1)

Then the video capture delegate becomes:

Working With Video

public func captureOutput(

_ output: AVCaptureOutput,
didOutput sampleBuffer: CMSampleBuffer,
from connection: AVCaptureConnection) {

if let pixelBuffer = CMSampleBufferGetImageBuffer(sampleBuffer) {
semaphore.wait()
DispatchQueue.global(qos: .userInitiated).async {

}
}
}

let resizedPixelBuffer = ...

if let output = try? model.prediction(image: resizedPixelBuffer) {
/* do something with the output */

}

self.semaphore.signal()

58

The first time semaphore.wait() is called, it doesn’t actually wait. It only decrements the
semaphore’s value from 1 to 0 and the thread continues. You can safely run a Core ML
prediction on that frame.

If the next frame arrives before Core ML is finished, semaphore.wait() really will wait. It
blocks the video thread because now the semaphore’s value is 0. AvCaptureSession will
automatically drop any other frames that arrive in the mean time.

Once Core ML is done, you call semaphore.signal() to increment the value of the semaphore
from 0 to 1. Now semaphore.wait() sees that the semaphore is no longer 0 and wakes up the
video capture thread again.

And so on... Using a semaphore is completely thread-safe and a really neat solution, plus
with a small modification it allows you to perform multiple Core ML requests at once.

Note: Besides this being a 100% thread-safe solution, there is another small difference with
the method from the previous section. There you ignored any new frames while Core ML
was still busy. After Core ML has finished, you may have to wait a short while until the next
frame arrives (anywhere between 0 and 33 ms).

With the method from this section, you’re letting AvCaptureSession take care of dropping
the frames. When Core ML is finished and the video capture thread gets unblocked, it will
immediately start a new prediction — no need to wait until the next frame arrives, because
you already have a frame.

However, this is actually an older pixel buffer from a few frames ago, not the most recent
one. So that’s the trade-off: with the semaphore method you get higher throughput but what
Core ML sees may be a little behind on what’s happening right now. Naturally, the faster
your model, the less of a concern this is.

Working With Video 59
Multiple requests at a time

The methods described so far were all used to make sure you only perform one Core ML or
Vision request at a time, so that you don’t build up a large backlog and the video capture
session does not run out of buffers.

That’'s a good idea indeed. However, there is a speed advantage to running multiple
requests at a time, as long as you limit this to 2 or 3 simultaneous requests at most.

When Core ML runs a model on the GPU, it also does a bunch of work on the CPU such as
encoding all the Metal kernels into command buffers. This can take several milliseconds.
But once the job has been handed over to the GPU, the CPU sits idle and waits until the GPU
is done.

The CPU and GPU are two parallel processors that can work independently, so it’s a waste
of time to make the CPU wait on the GPU and vice versa. While the GPU is handling request
n, the CPU can already do the preparation work for request n+1 and possibly even request
n+2. Keep ‘em busy!

To do this in your app, simply change the value of the semaphore when you initialize it:

let semaphore = DispatchSemaphore(value: 2)

Now semaphore.wait() needs to be called two times before it will block. That means your
video capture thread will be able to schedule two separate Core ML requests at the same
time. This is no problem for Core ML because internally it uses a serial queue to manage
multiple requests.

As soon as the first request is done, semaphore.signal() unblocks the video thread again,
making room for the next frame to be processed. This way youw’ll always have two Core ML
predictions running concurrently. This scheme is also called double-buffering.

Double-buffering will appear to make your model run a little faster, because it overlaps
some of the CPU work with the GPU work from a previous frame.

The timeline looks like this:

Working With Video 60

start prediction for frame 1

start prediction for frame 2

block thread for frame 3

drop frame 4

finish prediction for frame 1
start prediction for frame 3

block thread for frame 5

drop frame 6

drop frame 7

finish prediction for frame 2
start prediction for frame 5

...and so on...

After the predictions for the first two frames are underway, the video capture thread
blocks on frame 3. Any new frames arriving after this will be automatically dropped by
AVCaptureSession

As soon as the prediction for frame 1 finishes, the video capture thread resumes. That
thread got blocked on frame 3, so that’s the frame it makes the prediction for. Note that
this is not the most recent frame, as frame 4 got dropped in the mean time.

The next frame that arrives, 5, will block the video capture thread again. The other
prediction that’s still running at this point is the one for frame 2. Once that is done, frame
5 can have a go, and so on.

Note: If your model is fast enough, no frames will actually get dropped. The above timeline
is for a model that is significantly slower than 33 ms per frame.

Why stop at two concurrent predictions, why not three or even more? In practice it turns
out you gain the most from having two predictions in parallel. On faster devices it may be
worth using a semaphore with value 3, known as triple-buffering. (The faster the device,
the quicker the model runs but also the more idle time there is to take advantage of.)

There’s an important trade-off here: the more requests you schedule at the same time, the
longer it will take before you get the results. Look at the above timeline: you don’t get the
results for frame 2 until about five frames later. With triple-buffering, this time delay —
known as the latency — only becomes longer.

You get a higher throughput, i.e. the device is able to squeeze as much performance out of
the CPU and GPU as possible, but you lose responsiveness.

For offline work, such as when you’re using AvAssetReader to read the frames from a video
file, the latency isn’t important. But the law of diminishing returns also applies here: you

Working With Video 61

won’t gain much from doing more than two or three predictions at a time. If your CPU and
GPU are both maxed out already, adding more work won’t make them go any faster...

The in-flight index: whose turn is it?

When scheduling multiple Core ML requests at a time, there is an important detail you need
to take care of. Because every request will run from its own thread, these threads should
not be sharing resources.

Suppose you’re using Core Image to resize the camera’s CvPixelBuffer to the dimensions
that are expected by the mlmodel. Instead of allocating a new destination CVPixelBuffer for
every frame, it’s more efficient to just allocate it once and put it in an instance variable —
let’s call it resizedPixelBuffer — and keep re-using that.

However, it’s possible that two different prediction threads will now try to access the
resizedPixelBuffer variable at the same time. That’s a race condition waiting to happen...

The solution is to allocate one of these resizedPixelBuffer objects for each possible Core ML
request. You also need to write code to cycle through these buffers. First, add some instance
variables:

let maxInflightBuffers = 2 // or 3

let semaphore: DispatchSemaphore

var inflightBuffer = 0

var resizedPixelBuffers: [CVPixelBuffer] = []

Initialize them like so:

semaphore = DispatchSemaphore(value: maxInflightBuffers)

for _ in 0..<maxInflightBuffers {
var resizedPixelBuffer: CVPixelBuffer = ...
resizedPixelBuffers.append(resizedPixelBuffer)

}

Then change the video capture delegate method to:

Working With Video 62

public func captureOutput(_ output: AVCaptureOutput,

didOutput sampleBuffer: CMSampleBuffer,
from connection: AVCaptureConnection) {
if let pixelBuffer = CMSampleBufferGetImageBuffer(sampleBuffer) {
semaphore.wait()

let inflightIndex = inflightBuffer

inflightBuffer += 1

if inflightBuffer >= maxInflightBuffers {
inflightBuffer = 0

}

DispatchQueue.global(qos: .userInitiated).async {
let resizedPixelBuffer = self.resizedPixelBuffers[inflightIndex]
/* actually resize the pixel buffer */

if let output = try? model.prediction(image: resizedPixelBuffer) {
/* do something with the output */
}

self.semaphore.signal()
}
}
}

Now inflightIndex will cycle between 0 and maxInflightBuffers. With maxInflightBuffers
= 2, there will be at most two Core ML predictions happening in parallel, each in its
own thread. One of these will always have inflightIndex = 0 and the other will have
inflightIndex = 1. Each thread is therefore always reading from and writing to its own
resizedPixelBuffer object.

Note: The code that increments inflightIndex must always be run from the same thread, in
this case the video capture thread. Don’t put this inside the DispatchQueue or it’s no longer
thread-safe.

Vision requests are not thread-safe!

In the previous examples I've only shown the code for using Core ML directly. When using
double or triple-buffering, you’ll need to treat the Vision request object as a resource that
should not be shared between threads too.

It’s OK to call Core ML’s model.prediction(...) method from multiple threads, but a Vision
request object should only be used by one thread at a time.

Working With Video 63

So if you’re planning to use Vision in combination with the semaphore, you need to do
allocate as many Vision request objects as your maxInflightBuffers:

var visionRequests = [VNCoreMLRequest]()

for _ in 0..<maxInflightBuffers {
let request = VNCoreMLRequest(model: ...) { request, error in
/* handle the results */
}
requests.append(request)

}

It’s OK for all these VNCoreMLRequest objects to have the same completion handler. (I usually
put it in a separate function.)

Now the code in the camera capture delegate will be slightly different:

public func captureOutput(_ output: AVCaptureQutput,
didOutput sampleBuffer: CMSampleBuffer,
from connection: AVCaptureConnection) {
if let pixelBuffer = CMSampleBufferGetImageBuffer(sampleBuffer) {
semaphore.wait()

let inflightIndex = inflightBuffer

inflightBuffer += 1

if inflightBuffer >= maxInflightBuffers {
inflightBuffer = 0

}

DispatchQueue.global(qos: .userInitiated).async {
let handler = VNImageRequestHandler(cvPixelBuffer: pixelBuffer)
let request = self.requests[inflightIndex]
try? handler.perform([request])
self.semaphore.signal()

}

}
}

Note that you can also call semaphore.signal() from the VNCoreMLRequest completion handler.

Is this really a good idea?

Having multiple predictions in progress at once really improves the throughput of the
model, because now the CPU and GPU are as busy as they can be. However, on an iPhone

Working With Video 64

that is not always the best idea. You may need to use the GPU for drawing as well, especially
if you’re doing things with AR.

Maxing out the GPU for a long stretch of time will also make it hot, and eventually the GPU
will throttle down to run at a lower clock speed.

These high throughput techniques certainly have a place, but use them judiciously.

Even if your model is fast enough to run at 30 FPS or faster, I would encourage you to
find ways to run the Core ML model as little as possible. Keep the camera at 30 FPS but add
some logic to captureOutput(_:didOutput:from:) to skip every other frame, for example. This
will seriously improve the energy usage of your app and keeps users’ batteries charged for
longer.

For the best user experience, my advice is to run the model at the lowest possible frame
rate you can possibly get away with. For example, if the user is waving the camera around
too much then pause the predictions and wait until they’ve stopped moving before running
the model again.

How big is my preview?

If you’re displaying the live video feed from the camera using AvCaptureVideoPreviewlLayer,
the video may be letterboxed on the sides or on the top and bottom. This depends on the
screen size of the device and the preview layer’s videoGravity setting.

Sometimes it’s useful to know what the screen coordinates are of the actual video, for
example to draw something on top, such as a detected bounding box or a segmentation
mask. You can find these screen coordinates with the following code snippet:

let videoPreviewRect = previewlLayer.layerRectConverted(fromMetadataOutputRect:
CGRect(x: 0, y: 0, width: 1, height: 1))

	Table of Contents
	Introduction
	Who Is This Book For?
	Useful Links
	Part 1: The Core ML Ecosystem
	What is Core ML — and What is It Not?
	coremltools

	Part 2: Converting Models
	Image Preprocessing

	Part 3: Examining Models
	Viewing Models With Netron
	The mlmodel File Format
	Using the Spec to Edit Models

	Part 4: Model Surgery
	Saving the Weights as 16-bit Floats

	Part 5: Inside the App
	The Neural Engine
	Transposing an MLMultiArray

	Part 6: Advanced Topics
	Working With Video

