2

il Y

ks
<
i ?E.ji.

;.

_—
ot

o ..rﬁi Shl b |
.1 ¥ 'ﬂ {-r..".:_ . :: i
1 N .'T;.Z_ TH}'F:-']‘E HHL

Kenji Suzuki and Mat Whitney

Codelgniter Testing Guide
Beginners’ Guide to Automated Testing in PHP.

Kenji Suzuki and Mat Whitney

This book is for sale at http://leanpub.com/codeigniter-testing-guide

This version was published on 2016-01-23

)

Leanpub

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing
process. Lean Publishing is the act of publishing an in-progress ebook using lightweight tools and
many iterations to get reader feedback, pivot until you have the right book and build traction once
you do.

© 2015 - 2016 Kenji Suzuki and Mat Whitney

http://leanpub.com/codeigniter-testing-guide
http://leanpub.com
http://leanpub.com/manifesto

Tweet This Book!

Please help Kenji Suzuki and Mat Whitney by spreading the word about this book on Twitter!
The suggested hashtag for this book is #CITestGuide.

Find out what other people are saying about the book by clicking on this link to search for this
hashtag on Twitter:

https://twitter.com/search?q=#CITestGuide

http://twitter.com
https://twitter.com/search?q=%23CITestGuide
https://twitter.com/search?q=%23CITestGuide

Contents

Preface e i
The BookataGlance i
What You Need for ThisBook iii
Who should read This Book? iii
Why PHPUnit? iv
Is This a Codelgniter Book? iv
Is Testing PHP Applications Difficult?, iv

Is Testing Codelgniter Applications Difficult? v
TestingisFunandEasy o L. v
Conventions Used in ThisBook v
Errata oL vii

1. Whatis Automated Testing? 1

1.1 Primitive Example 1
Manual Testing 1
Automated Testing 1

1.2 Why should you write testcode? 1

1.3 Findingthe Middle Way 1

1.4 Whatshouldyoutest? 1

1.5 TDDorNotTDD 1

2. Setting Up the Testing Environment 2
2.1 Installing Codelgniter 3
2.2 Installing ci-phpunit-test 3

Enabling Monkey Patching 00 L 3

2.3 (Optional) Installing VisualPHPUnit 3
Installing Composer 3
Installing VisualPHPUnit 3
Installing PHPUnit 3
Configuring VisualPHPUnit 3
Configuring PHPUnit XML Configuration File 3

2.4 Installing PHPUnit. 3

2.5 (Optional) Installing PsySH 3

2.6 Installing via Composer 3

CONTENTS

Installing Composer 3
Installing Codelgniter via Composer., 3
Installing ci-phpunit-test via Composer 3
Installing PHPUnit via Composer 3
(Optional) Installing PsySH via Composer. 3

3. TestJargon 4
3.1 Testinglevels 4
Unit Testing e 4
Integration Testing L 4

System Testing L 4

3.2 Testing Types o e 4
Functional Testing 4
Database Testing 4
Browser Testing 4
Acceptance Testing L 4

33 CodeCoverage v v vt i e e e e 4
3.4 Fixtures 4
35 TestDoubles 4
Mocksand Stubs 4

4. PHPUnitBasics 5
41 Running PHPUnit o 5
Running All Tests o 5
Running a Specific Test Case 7

4.2 Running PHPUnit via Web Browser 7
Running Web Server 7
Running All Tests 8
Running a Specific Test Case i 10

4.3 Configuring PHPUnit 12
XML Configuration File 12
Command Line Arguments and Options 14

4.4 Understanding the Basics by Testing Libraries 17
Basic Conventions o o 18
DataProvider 23
Fixtures 27
Assertions 29

5. Testing a Simple MVC Application 30
5.1 Functional Testing for Controller 31
Controller to Handle StaticPages 31
Manual Testing with a Web Browser 31

Test Case for Page Controller 31

CONTENTS

Checking Code Coverage o i ittt i 31

5.2 Database Testing for Models 31
Preparing the Database L 31

News Section e 31
Manual Testing with a Web Browser 31
Database Fixtures 31

Test Case for the News Model 31
Checking Code Coverage i i i 31

6. Unit Testing for Models 32
6.1 Why Should You Test Models First? 33
6.2 PHPUnit Mock Objects 33
Playing with Mocks 33

Partial Mocks 33
Verifying Expectations 33

6.3 Testing Models without Database, 33
Testing the get_news() Method with Mocks 33

Testing the set_news() Method with Mocks 33

6.4 With the Database or Without the Database? 33
Testing with Little Value Lo o 33

When You Write Tests without the Database 33

7. Testing Controllers L 34
7.1 Why is Testing Controllers Difficult? 34
7.2 Test Case for the News Controller 34
7.3 Mocking Models 34
7.4 Authentication and Redirection 34
Installinglon Auth L 34
Manual Testing with a Web Browser 34

Testing Redirection 34
Mocking Auth Objects 34

7.5 What if My Controller Needs Something Else?. 34
8. Unit Testing CLI Controllers 35
8.1 Dbfixture Controller 35
8.2 Fakingis cli() 35
83 Testingexit() 35
8.4 Testing Exceptions 35
8.5 Testing Output 35
8.6 Monkey Patching 35
Patching Functions L 35
Patching Class Methods 35

8.7 Checking Code Coverage it ittt 35

CONTENTS

10.

11.

Testing REST Controllers 36
9.1 Installing Codelgniter Rest Server, 36
Fixing the Codelgniter Rest Server Code 36
9.2 Testing GET Requests 36
Getting AlloftheData 36
Getting One User’'sData 36
9.3 Adding Request Headers 36
9.4 Testing POST Requests 36
9.5 Testing JSONRequests. 36
9.6 Testing DELETE Requests 36
Browser Testing with Codeception, 37
10.1 Installing and Configuring Codeception 38
What is Codeception? 38
Installing Codeception 38
What is Selenium Server? L o L 38
Installing Selenium Server L 38
Initializing Codeception Lo 38
Configuring Acceptance Tests 38
10.2 Writing Tests o L L e 38
Conventions for Codeception Acceptance Tests 38
Writing Our First Test o 38
10.3 Running Tests L 38
Running Selenium Server L 38
Running the Web Server 38
Running Codeception 38
10.4 Browser Testing: Prosand Cons 38
10.5 Database Fixtures 38
10.6 Test Case for the News Controller 38
Database Fixtures 38
Testing Page Contents 38
Testing Forms L 38
NewsCept o o e e 38
10.7 Testing with Google Chrome 38
Installing the ChromeDriver L. 38
Configuring Acceptance Testso 38
Running Selenium Server L L 38
Running Tests 38

Codelgniter Testing Guide 39

Preface

When I learned PHP for the first time, I did not know about writing test code at all. Nobody
around me was writing test code. There was no PHPUnit (a testing framework for PHP), yet. In
2004, PHPUnit 1.0.0 was released for PHP4. In the same year, PHPUnit 2.0.0 was released for PHP5.
However, I have never used PHPUnit 1 or 2.

When I found Codelgniter (a PHP web application framework) for the first time, in 2007, it had a
Unit testing class, but there was no test code for the framework itself.

Now, in 2015, more than 10 years have passed since PHPUnit 1.0.0. Codelgniter 3.0 has its own test
code with PHPUnit, and the code coverage for those tests is around 60%. We are progressing a bit
day by day.

Have you ever written test code for your web application? If you haven’t, you may imagine that
writing test code will be very difficult or bothersome. Maybe you want to write test code, but don’t
know how to do so.

It is common to over-estimate the cost of learning something new, and testing is no exception. After
reading a tutorial for PHPUnit, I thought, “So how do I test my application?” I had trouble seeing
the similarities between the tests in the tutorial and the tests I would need to write for my own
application.

This book is a beginners’ guide for automated testing of PHP web applications. Of course, you will
be able to write test code for any PHP applications after reading this book, but the focus will be on
web applications.

I eschew complexity, favoring simple solutions. I use simple and easy to understand solutions first
in the book, so you won’t get lost. Let’s keep going!

The Book at a Glance

If you want to know about this book, this is a great place to start. What follows is a very quick
overview of what each chapter covers. This should give you an idea of what’s ahead, or serve as a
starting point if you want to find a particular portion of the content to review later.

Chapter 1: What is Automated Testing?

Let’s begin learning about automated testing. First we will explore the basic concepts of automated
testing. We will find out why and what you should test. At the same time, I will explain the ideas
and testing policies used by this book.

Preface ii

Chapter 2: Setting Up the Testing Environment

To run tests in your PHP environment, you will need to install some additional software. For this
book, this includes Codelgniter, PHPUnit and a tool which acts as a bridge between them, ci-phpunit-
test. If you don’t like command line, you can use VisualPHPUnit to run tests via your web browser.

Chapter 3: Test Jargon

We define test jargon here. One of the annoying and confusing things in testing is the new
vocabulary required to understand it. By the end of this chapter we’ll help you understand
the difference between Unit, Integration, and System testing; Functional and Acceptance testing;
Fixtures and Mocks; and more.

Chapter 4: PHPUnit Basics

In this chapter, we will learn the basics of PHPUnit. We will run PHPUnit and learn how to configure
it. After that, we will study PHPUnit conventions and write our first test. We also cover PHPUnit
functionality, data providers, fixtures, and assertions.

Chapter 5: Testing a Simple MVC Application

You've already learned how to write test code, so here we will write tests for a Codelgniter Tutorial
application. We will write tests for a controller and a model. In this chapter, we will use the database
for model testing.

Chapter 6: Unit Testing for Models

We will learn more about testing models. We will write tests for models without using the database.
To do this, we will learn about PHPUnit mock objects.

Chapter 7: Testing Controllers

We will learn more about testing controllers in this and the next two chapters. In this chapter, we
will write tests for a controller for reviewing, and write tests with mocking models. We also will
write test cases for authentication and redirects.

Chapter 8: Unit Testing CLI Controllers

We will continue learning to write tests for controllers. In this chapter, we will write unit tests for
controllers, and learn about monkey patching.

Chapter 9: Testing REST Controllers

In this chapter, we will learn about testing REST controllers. You will learn how to send (emulate)
requests with methods other than GET and POST.

Preface iii

Chapter 10: Browser Testing with Codeception

In previous chapters, we have been using PHPUnit. In this chapter, we will learn about another
testing tool. We will install Codeception, learn to configure it, and write tests which work with the
web browser.

What You Need for This Book

I assume you have a general understanding of PHP 5.4 and object-oriented programming (OOP),
and you have PHP 5.4, 5.5, or 5.6 installed.

If you know Codelgniter, you may have an easier time with some parts of this book, but if you don’t
know it, don’t worry. Codelgniter is an MVC framework that is very easy to learn and understand,
and it has great documentation. I will explain Codelgniter-specific conventions and functionality in
this book.

I do not assume that you are using a specific operating system. However, my code examples are
written for Mac OS X. Bash commands are provided for Mac OS X and also work on Ubuntu. I have
not tested them on Windows, but they will probably work.

We use the following software in this book:

« PHP 5.5 (You can use PHP 5.4 or 5.6)
« Codelgniter® 3.0

+ ci-phpunit-test® 0.10

« PHPUnit’ 4.8

Codeception* 2.1

Selenium Standalone Server® 2.48

Who should read This Book?

This book is for PHP developers who don’t know Automated Testing or Unit Testing, or for those
looking for help testing Codelgniter applications.

If one or more of the lines below sounds familiar, this book is perfect for you!

« I have never written test code.
« I want to write test code, but I don’t know how.
« Itried to write test code in the past, but I couldn’t quite figure it out.

"http://www.codeigniter.com/
*http://kenjis.github.io/ci-phpunit-test/
*https://phpunit.de/
“http://codeception.com/
*http://www.seleniumhq.org/

http://www.codeigniter.com/
http://kenjis.github.io/ci-phpunit-test/
https://phpunit.de/
http://codeception.com/
http://www.seleniumhq.org/
http://www.codeigniter.com/
http://kenjis.github.io/ci-phpunit-test/
https://phpunit.de/
http://codeception.com/
http://www.seleniumhq.org/

Preface iv

Why PHPUnit?

PHPUnit is the de facto standard Testing Framework in the PHP world.

These popular PHP frameworks use PHPUnit for their own tests, and they provide support for
application testing with PHPUnit:

CakePHP
FuelPHP
« Laravel

+ Symfony
e Yii
Zend Framework

Codelgniter 3.0 uses PHPUnit for testing its system code. Support for application testing with
PHPUnit is currently planned for Codelgniter 4.0.

Is This a Codelgniter Book?

This book is not specifcally for Codelgniter, but we use Codelgniter applications in our examples.
Probably 85% of the book’s content is not specific to Codelgniter, and is applicable to testing any
PHP application.

So, if you want to learn Automated Testing in PHP, this book is still good for you. Most of the
techniques outlined in this book can be applied to any other PHP framework, and even to other
languages.

In modern web development, you probably use a framework. I don’t know what framework you use
or like, but if you learn testing with a framework, you can write test code more easily in your real
development environment.

Codelgniter is one of the most easily understood frameworks currently available for PHP. This will
allow you to spend more of your time learning about testing, even if you don’t know Codelgniter.

Another reason I chose Codelgniter as the framework used in this book is that too many Codelgniter
developers don’t write test code. So, 'm hoping that by choosing Codelgniter for my examples, this
book will promote better testing practices in the Codelgniter community.

Is Testing PHP Applications Difficult?

No, but you need the right tools and you need to know how to write tests.

Preface v

Is Testing Codelgniter Applications Difficult?

No, at least it is not difficult with Codelgniter 3.0.

Previously, it was said that testing Codelgniter applications was difficult, but I will show you why
this is no longer the case.

Testing is Fun and Easy

Yes, it is really fun. Do you like to write code? Tests are also code. Good tests will help you write
better code.

When people are asked why they don’t write test code, it is often because they think it will be
difficult or will take too much time.

I will show you how to write tests and try to show you that it can be fun and easy. Writing good tests
now will help you catch mistakes earlier, and make it easier to change your code without introducing
errors, saving time in the long run.

Conventions Used in This Book

The following typographical conventions are used in this book:

« Italic: Indicates new terms or technical terms.

+ Constant width: Used for program listings, as well as within paragraphs to refer to program
elements such as class or function names, variables, statements, and keywords. Also used for
Bash commands and their output.

For example, the following is a block of PHP code:

<?php

echo 'Hello World!';

Sometimes we use diff-style:

Preface vi

--- a/Codelgniter/application/tests/libraries/Temperature_converter_test.php
+++ b/Codelgniter/application/tests/libraries/Temperature_converter_test.php
@@ -6,7 +6,7 @@ class Temperature_converter_test extends TestCase

{
$obj = new Temperature_converter();
$actual = $obj->FtoC(100);
- $expected = 37.0;
+ $expected = 37.8;
$this->assertEquals($expected, $actual, '', 0.01);
}

The listing above is in a format called unified diff. It shows the difference between two files. The
format starts with two-line header, with the path and name of the original file preceded by ---
on the first line, and the new file preceded by +++ on the second line. In some situations, each line
could include a date/time stamp, as well.

In this case, the original file and the new file are the same file (this might not be the case if the file
was moved or renamed, or if the diff was to indicate that the content was moved to a new file).
Following this are one or more change hunks which show areas where the files differ.

The line “ee -6,7 +6,7 @a@” shows the hunk range. The first set of numbers (“-6,7”) indicates the
lines in the original file, the second set (“+6,7”) indicates the lines in the new file. These numbers
are in the format ‘start,count’, where the ‘,count’ may be omitted if the hunk only includes one
line. So, in this example, the hunk starts at line 6 in both files and contains 7 lines in both files.

The contents of the hunk (following the hunk range) contain the lines from the files, with additions
preceded with + (highlighted in green here), and deletions preceded with - (highlighted in red here).

The remaining lines (not preceded with either a - or +) are provided for context.

In short, remove the line(s) starting with - from the original file and add the line(s) starting with
+ to get the new file.

This is an example of a Bash command and its output:

$ echo 'Hello World!'
Hello World!

O This is an example of a note or general information.

Q This is an example of a tip or suggestion.

Preface vii

9 This is an example of a warning or caution.

f This is an example of an exercise.

Errata

Although I have taken care to ensure the accuracy of this content, mistakes do happen. If you notice
any mistakes, I would be grateful if you would report them to me. If you find any errata, please file
an issue on GitHub https://github.com/kenjis/codeigniter-testing-guide, and I will update the book
as soon as possible.

https://github.com/kenjis/codeigniter-testing-guide

1. What is Automated Testing?

1.1 Primitive Example

Manual Testing

Automated Testing

1.2 Why should you write test code?
1.3 Finding the Middle Way
1.4 What should you test?

1.5TDD or Not TDD

Setting Up the Testing Environment 3

2. Setting Up the Testing Environment

2.1 Installing Codelgniter

2.2 Installing ci-phpunit-test

Enabling Monkey Patching
2.3 (Optional) Installing VisualPHPUnit

Installing Composer

Installing VisualPHPUnit

Installing PHPUnit

Configuring VisualPHPUnit

Configuring PHPUnit XML Configuration File

2.4 Installing PHPUnit
2.5 (Optional) Installing PsySH

2.6 Installing via Composer

Installing Composer

Installing Codelgniter via Composer
Installing ci-phpunit-test via Composer
Installing PHPUnit via Composer
Creating a phpunit Shortcut

(Optional) Installing PsySH via Composer

3. Test Jargon

3.1 Testing levels

Unit Testing
Integration Testing

System Testing

3.2 Testing Types

Functional Testing
Database Testing
Browser Testing

Acceptance Testing

3.3 Code Coverage
3.4 Fixtures

3.5 Test Doubles

Mocks and Stubs

4. PHPUNIit Basics

In this chapter, we will learn the basics of PHPUnit, including how to run PHPUnit, how to configure
PHPUnit, and how to write test code. We will also study the basic conventions and functionality of
PHPUnit including data providers, fixtures, and assertions.

4.1 Running PHPUnit

There is a sample test case class in ci-phpunit-test, so you can already run some tests.

If you use VisualPHPUnit, go to Running PHPUnit via Web Browser.

Running All Tests

If you run the phpunit command without arguments, PHPUnit runs all test case classes. Using the
- -debug option shows additional information which might be of use in debugging.

$ cd Codelgniter/application/tests/
$ php phpunit.phar --debug

0 To Composer users
$./phpunit.sh --debug

See Creating phpunit shortcut.

PHPUnit Basics 6

@ @ tests — bash — 80x24
bash +

bash-3.2$ php phpunit.phar --debug
PHPUnit 4.8.6 by Sebastian Bergmann and contributors.

Starting test 'Welcome_test::test_index'.
Starting test 'Welcome_test::test_method_4084'.

Starting test 'Welcome_test::test_APPPATH'.

Time: 1.23 seconds, Memory: 13.25Mb

0K (3 tests, 3 assertions)

Generating code coverage report in Clover XML format ... done
Generating code coverage report in HTML format ... done
bash-3.2% [|

Run phpunit command

When running the tests, if you see “OK (3 tests, 3 assertions)” in the output (highlighted in
green in the image above), this means that all tests passed. If one or more of the tests fails, you’ll see
a FAILURES! message (often highlighted in red, depending on your environment).

In the image, “Starting test 'Welcome_test::test_index'.” isa debug message. It shows which
test case class and method is running. A dot (.) on the next line means the test passed.

“Generating code coverage report in ...” is a status message informing us that PHPUnit is
generating a code coverage report.

Code Coverage Report

To generate code coverage report, PHPUnit needs Xdebug' or phpdbg?.

If you use Xdebug, you must have Xdebug installed and you will need to enable it before running
the tests.

If you use phpdbg, you must have phpdbg installed and you will need to run the following command:

"http://xdebug.org/
*http://phpdbg.com/

http://xdebug.org/
http://phpdbg.com/
http://xdebug.org/
http://phpdbg.com/

PHPUnit Basics 7

$ phpdbg -qrr phpunit.phar --debug

0 To Composer users

$ phpdbg -qrr ../../vendor/bin/phpunit --debug

To see the HTML code coverage report, open application/tests/build/coverage/index.html.

Running a Specific Test Case

You can specify a test file for PHPUnit to run by supplying the filename (and any necessary path
information) as an argument when executing PHPUnit.

$ php phpunit.phar controllers/Welcome_test.php

Okay, go to Configuring PHP Unit.

4.2 Running PHPUnit via Web Browser

Running Web Server

To use VisualPHPUnit, we will use PHP’s built-in web server.

0 If you have a web server like Apache installed, you can use it. For more information, see
https://github.com/Visual PHPUnit/VisualPHPUnit#web-server-configuration.

Open your terminal, navigate to the directory in which you’ve placed VisualPHPUnit, and type the
following commands:

$ cd app/public/
$ php -S 127.0.0.1:8080

Then, access the following URL via your web browser:

« http://127.0.0.1:8080/

https://github.com/VisualPHPUnit/VisualPHPUnit#web-server-configuration
http://127.0.0.1:8080/

PHPUnit Basics

You should see the VisualPHPUnit Home page.

@ L] | VisualPHPUnit - Home X
€« C | [} 127.0.0.1:8080

FILES
il Codelgniter Testing Guide

m e

%

VisualPHPUnit Home

Running All Tests
To run all tests, you use XML Configuration File. Select the XML file you configured, and click the

[Run Tests] button or press the [T] key.

PHPUnit Basics

®

e L] [visualPHPUnit - Home *x

nF
]

€« C | [} 127.0.0.1:8080

z

Home

Tips: You can select multiple files by single-
clicking them. You can also use shift+click to
select a range of files, or ctri+click
{emd+click) to select an entire directory.

OPTIONS

Store Statistics Mo =

B Create Snapshots No v

© Sandbox Errors Mo :
e

v /Users/kenji/code/Codelgniter/application/tests/phpunit.xmil

Note that choosing an XML configuration file
will cause VPU to ignore the tests selected
above and use the tests specified in the XML
file instead.

DISPLAY

= Sort Results (asc) -]

@ Show @F @ @Sk @Su

Run Tests

VisualPHPUnit XML Configuration File

You should see the results like the following.

PHPUnit Basics 10

® O ® [visuaPHPUnit-Home x| =]
&« C [} 127.0.0.1:8080 wl =
Home
—= Welcome_test
il Codelgniter Testing Guide
test_index

Execution time: 0.0476930141448s

test_method_404
Execution time: 0.0277500152588s

test APPPATH
Execution time: 0.00866293907166s

Suite Statistics Test Statistics
Failed (0/1) Failed (0/3)
Tips: You can select multiple files by single-

clicking them. You can also use shift+click to Incomplete (0/1) Incomplete (0/3)
select a range of files, or ctri+click

{emd+click) to select an entire directory.
Skipped (0/1) Skipped (0/3)

OPTIONS

. N N Succeeded (1/1) Succeeded (3/3)

Store Statistics o v

VisualPHPUnit Run Tests using XML Configuration File

Running a Specific Test Case

To run a specific test case file, select the file, and make sure XML Configuration File isNone. Then
click the [Run Tests] button or press the [T] key.

PHPUnit Basics 1

e L] | visualPHPUnit - Home *x

€& = C [} 127.0.0.1:8080

£p
m e

Home

FILES
‘& Codelgniter Testing Guide

Bl _ci_phpunit_test
i build
‘& controllers
il helpers
i hooks
M libraries
i mocks
il models
I Bootstrap.php
i TestCase.php

VisualPHPUnit Select a File

You should see the results like the following.

PHPUnit Basics 12

e L] [VisualPHPUnit - Home X\ .i.
€ > C [} 127.0.0.1:8080 %l =
Home
FILES Welcome_test
‘& Codelgniter Testing Guide
i _ci_phpunit_test test_index

LI Execution time: 0.00989508628845s
' controllers

i helpers test_method_404

il hooks Execution time: 0.00582599639893s
M libraries

i mocks

il models test_APPPATH

ki Bootstrap.php Execution time: 0.00150895118713s

ki TestCase.php

Suite Statistics Test Statistics
Failed (0/1) Failed (0/3)
Tips: You can select multiple files by single-

clicking them. You can also use shift+click to Incomplete (0/1) Incomplete (0/3)
select a range of files, or ctrl+click

{cmd+click) to select an entire directory.
Skipped (0/1) Skipped (0/3)

OPTIONS
Succeeded (1/1) Succeeded (3/3)

a

Store Statistics No

VisualPHPUnit Run Tests

4.3 Configuring PHPUnit

In the previous section, you ran the phpunit command and saw the output. Since most of the
configuration options were specified by a PHPUnit configuration file, you only specified whether
you wanted to include debug output (by using the - -debug option).

XML Configuration File

application/tests/phpunit.xml is the PHPUnit configuration file which specified most of the
options used in our previous tests.

phpunit

The attribues of the first element, phpunit, configure PHPUnit itself.

© 00 N O O

10
11
12
13
14
15
16
17
18
19

PHPUnit Basics 13

<phpunit
bootstrap="./Bootstrap.php"
colors="true">

The bootstrap attribute sets the bootstrap file to be used by PHPUnit. The colors attribute tells it
to use colors in the output. If your terminal doesn’t have color capability, change the value of the
colors attribute from true to false.

testsuites

The next element, testsuites, defines the test suites which will be executed by PHPUnit. A test suite
is a set of test case files, usually related in some way. Each testsuites element contains one or more
testsuite elements, each specifying files or directories which will be included (or excluded) in the
test and a name for the test suite itself. In this case, our test case files are in ./ (application/tests)
directory, and we specify a test.php suffix, so only files ending in test.php within that directory
will be included. We are also excluding files in the . /_ci_phpunit_test/ directory.

<testsuites>
<testsuite name="Codelgniter Application Test Suite">
<directory suffix="test.php">./</directory>
<exclude>./_ci_phpunit_test/</exclude>
</testsuite>
</testsuites>

filter

The next element, filter, is used to configure code coverage reporting. The whitelist ele-
ment contains elements which define files and directories to be included in the report. The
first directory element indicates that we include files with suffix .php in the ../controllers
(application/controllers) directory

<filter>
<whitelist>
<directory suffix=".php">../controllers</directory>
<directory suffix=".php">../models</directory>
<directory suffix=".php">../views</directory>
<directory suffix=".php">../libraries</directory>
<directory suffix=".php">../helpers</directory>
<directory suffix=".php">../hooks</directory>
</whitelist>
</filter>

20
21
22
23
24

PHPUnit Basics 14

The whitelist filter is important in accurately reporting code coverage. If you don’t define it, PHPUnit
only includes PHP files which run at least one line during test execution. If there are some PHP
classes for which you don’t write any test code, they probably will not run during test execution,
and they are not included in the coverage report. This means you have 0% coverage for those classes,
but your coverage report doesn’t include the classes in calculating the coverage for your application.

In contrast, some third party libraries which you use may be included in coverage reports if you don’t
define a whitelist element. You may not want to include the third party libraries, either because you
don’t want to run the additional tests, or the tests aren’t available.

0 Do We Need to Test Third Party Libraries?

If they are well-tested or they are very stable and you trust them, you probably don’t
need to test them. Otherwise, it is probably better to write some tests. In most cases, you’ll
probably want to write some tests to at least cover your own assumptions about the library.

logging

The next element, logging, configures the logging of test results. It defines where to put coverage
report files.

<logging>

<log type="coverage-html" target="build/coverage"/>

<log type="coverage-clover" target="build/logs/clover.xml"/>

<log type="junit" target="build/logs/junit.xml" logIncompleteSkipped="false"/>
</logging>

You can read the details and other configuration options in the PHPUnit Manual https://phpunit.
de/manual/4.8/en/appendixes.configuration.html

Command Line Arguments and Options

The phpunit command has many options, but we don’t use most of them, because it is usually
easier to specify them in the configuration file (especially when we want to use the same settings
every time we run a test). It might be preferable to specify an option on the command line if you
want to change an option for a single execution of the tests or an option isn’t available through the
configuration file, but you’ll usually specify your options in the file.

Here is a list of commonly-used options. If you want to see a full list of options, run phpunit --help.

Output

¢ --testdox

This option reports test execution progress in TestDox format.

https://phpunit.de/manual/4.8/en/appendixes.configuration.html
https://phpunit.de/manual/4.8/en/appendixes.configuration.html

PHPUnit Basics 15

$ php phpunit.phar --testdox
PHPUnit 4.8.10 by Sebastian Bergmann and contributors.

Welcome_test
[x] test index
[x] test method 404
[x] test APPPATH

e --debug

e -v/--verbose

We have already used the --debug option, which displays debugging information during test
execution. The -v or --verbose option outputs more information. If you get errors during test
execution, these options might help you determine the source of the errors.

Coverage Reporting

e --coverage-text

This option outputs the code coverage report in a text-only format in the terminal.

PHPUnit Basics 16

[BON tests — bash — B0x25
bash =+

bash-3.2% php phpunit.phar —--coverage-text
PHPUnit 4.8.6 by Sebastian Bergmann and contributors.

Time: 1.16 seconds, Memory: 13.25Mb

Generating code coverage report in Clover XML format ... done

Generating code coverage report in HTML format ... done

Code Coverage Report:
2015-09-13 08:21:57

Summary:

Lines: 2.60% (5/192)

Welcome

?_
bash-3.2%

phpunit —coverage-text

* --NO-coverage

This option ignores the code coverage configuration. Code coverage reporting takes time, so this
option allows you to skip generating the reports if you just want a quick look at the test results.

Grouping

e --group

e --exclude-group

These options only run tests from the specified groups, or exclude tests from the specified groups.

We can tag a test case class or method with one or more groups using the @group annotation like
this:

© 00 N O U b W N =

(AN
= o

PHPUnit Basics 17

/>l<>l<
* @group model
* @group database
*/

class News_model_test extends TestCase

ﬁ The comment marks should begin with /** (a slash followed by two asterisks). If you use
/*, the annotations will not work. The @group tag is an extension of the PHPDoc syntax,
and may coexist with other PHPDoc tags.

If you want to run tests in the model group or database group, you can use the --group option on
the command line as shown:

$ php phpunit.phar --group model, database

If you want to run tests in the model group, but exclude the database group, use the - -group option
as before, but add the - -exclude-group option:

$ php phpunit.phar --group model --exclude-group database

4.4 Understanding the Basics by Testing Libraries

In Codelgniter, libraries are the classes located in the application/libraries directory. In this
section we will write test code for a library class to help us understand the basics of PHPUnit.

Here is the class we will test. It is a calculator which converts Celsius to Fahrenheit, and Fahrenheit
to Celsius.

application/libraries/Temperature_converter.php

<?php

class Temperature_converter

{
J**
* Converts Celsius to Fahrenheit
*
* @param float $degree
* @return float
*/

public function CtoF($degree)

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

PHPUnit Basics 18

return round((9 / 5) * $degree + 32, 1);

Jk*

*

Converts Fahrenheit to Celsius
*

*

@param float $degree
@return float

*

*/
public function FtoC($degree)

{
return round((5 / 9) * ($degree - 32), 1);

Basic Conventions

Conventions for PHPUnit

Here are basic conventions for PHPUnit.

1. The tests for a class Class go into a class ClassTest.

2. ClassTest extends PHPUnit_Framework_TestCase (most of the time).

3. The tests are public methods named test*. Alternatively, you can use the @test tag in a
method’s docblock to mark it as a test method.

4. Inside the test methods, assertion methods such as assertEquals() are used to assert that an
actual value matches an expected value.

Conventions for ci-phpunit-test

We will change some of these conventions for Codelgniter according to Codelgniter’s coding
standards and to provide a convenient way to test.

1. The tests for a class named Class go into a class named Class_test.

2. Class_test extends TestCase.

3. The tests are public methods named test_*. Alternatively, you can use the @test tag in a
method’s docblock to mark it as a test method.

The TestCase class extends PHPUnit_Framework_TestCase, so we are, technically, still following the
conventions for PHPUnit in terms of extending PHPUnit_Framework_TestCase, but the TestCase
class adds some convenient functionality for running tests in Codelgniter.

We put the test case files in the application/tests directory.

0w I O O b W N =

TN
N =~ O ©

PHPUnit Basics 19

Codelgniter/
L— application/
L— tests/
— Bootstrap.php ... bootstrap file for PHPUnit
— TestCase.php ... TestCase class
F— controllers/ ... put your controller tests
— libraries/ ... put your library tests
F— models/ ... put your model tests
L— phpunit.xml ... config file for PHPUnit

Our First Test

Now that we know the basic conventions, we can write test code for our Temperature_converter
class.

application/tests/libraries/Temperature_converter_test.php

<?php

class Temperature_converter_test extends TestCase

{
public function test_FtoC()
{
$obj = new Temperature_converter();
$actual = $obj->FtoC(100);
$expected = 37.0;
$this->assertEquals($expected, $actual, '', 0.01);
}
}

0 To Codelgniter users

In this case, ci-phpunit-test autoloads the Temperature_converter library, so you don’t
have to call the $this->1load->1library() method in Codelgniter.

The $this->assertEquals() method is one of PHPUnit’s assertion methods. It checks whether two
values are equal. The third argument allows us to supply an error message, but we set it to an empty
string to use the default message. The fourth argument is the accepted delta, or difference, between
the first two values which should be considered equal.

PHPUnit Basics 20

9 Comparisons of Floating-Point Numbers

Comparisons of floating-point numbers using $this->assertEquals() should supply an
accepted delta as the fourth argument. For more information, see “What Every Computer
Scientist Should Know About Floating-Point Arithmetic®” and the PHP Manual®.

Because we compare floating-point numbers, we have to set the fourth argument. When comparing
strings or integers we don’t need it, so we often write code like this:

$this->assertEquals($expected, $actual);
Try running the test case with the phpunit command.

$ php phpunit.phar libraries/Temperature_converter_test.php

o To Composer users
$./phpunit.sh libraries/Temperature_converter_test.php

See Creating a phpunit shortcut.

*http://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html
“http://php.net/manual/en/language.types.float.php#language.types.float.comparison

http://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html
http://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html
http://php.net/manual/en/language.types.float.php#language.types.float.comparison
http://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html
http://php.net/manual/en/language.types.float.php#language.types.float.comparison

PHPUnit Basics 21

@ @ tests — bash — 80x24
bash +

bash-3.2% php phpunit.phar libraries/Temperature_converter_test.php
PHPUnit 4.8.6 by Sebastian Bergmann and contributors.

Time: 1.35 seconds, Memory: 14.58Mb
There was 1 failure:
1) Temperature_converter_test::test_FtoC

Failed asserting that 37.7999999999999971578290569595992565155029296875 matches
expected 37.0.

/Users/kenji/code/CodeIgniter/application/tests/libraries/Temperature_converter_
test.php:10
fUsers/kenji/code/Codelgniter/application/tests/phpunit.phar:547

Generating code coverage report in Clover XML format ... done
Generating code coverage report in HTML format ... done

bash-3.2% [|
e —

Run phpunit command

This time you should see the red FAILURES! message. In fact, there is a bug in our first test. 100
degrees Fahrenheit is not 37.0 Celsius, but 37.8.

You should see a red F, because the test failed. The letter marks indicate the following:

« . (dot): the test succeeded
F: the test failed
I: the test was incomplete

S: the test was skipped
« E: an error occurred while running the test

R: the test is marked as risky

PHPUnit Basics 22

There was 1 failure:

1) Temperature_converter_test::test_FtoC
Failed asserting that 37.7999999999999971578290569595992565155029296875 matches \
expected 37.0.

/Users/kenji/code/Codelgniter/application/tests/libraries/Temperature_converter_\
test.php:10
/Users/kenji/code/Codelgniter/application/tests/phpunit.phar:547

FAILURES!

Tests: 1, Assertions: 1, Failures: 1.

’ ’

You can see which test case class and method failed, as well as the file and line number, which, in
this case, is tests/libraries/Temperature_converter_test.php:10@.

If you fix the test as indicated below, you should see the green OK again.

--- a/Codelgniter/application/tests/libraries/Temperature_converter_test.php
+++ b/Codelgniter/application/tests/libraries/Temperature_converter_test.php
@@ -6,7 +6,7 @@ class Temperature_converter_test extends TestCase
{

$obj = new Temperature_converter();

$actual = $obj->FtoC(100);
- $expected = 37.0;
+ $expected = 37.8;

$this->assertEquals($expected, $actual, '', 0.01);

0 The listing above is in a format called unified diff. It shows the difference between two
files. In short, remove the red line starting with - from the original file and add the green
line starting with +, to get the new file. See Conventions Used in This Book for details.

After fixing the test, run phpunit again.

0 N O O b W N =~

O S SO RN
N O O b WD =r OO O

PHPUnit Basics 23

$ php phpunit.phar libraries/Temperature_converter_test.php
PHPUnit 4.8.10 by Sebastian Bergmann and contributors.

Time: 1.14 seconds, Memory: 12.50Mb

OK (1 test, 1 assertion)

Now we see the green OK again.

Data Provider
We have tested one test case. Is it enough? If you think not, you will need to write more tests. How?

application/tests/libraries/Temperature_converter_test.php

<?php

class Temperature_converter_test extends TestCase
{
public function test_FtoC()

{

$obj = new Temperature_converter();

$actual = $obj->FtoC(100);
$expected = 37.0;
$this->assertbEquals($expected, $actual, '', 0.01);

$actual = $obj->FtoC(-40);
$expected = -40.0;
$this->assertEquals($expected, $actual, '', 0.01);

Now we have two tests in one test method, but should you contiune adding tests like this? A common
saying in programming is “Don’t repeat yourself”. Continuing to add tests in this manner seems a
bit repetetive.

Testing Tip: One Assertion in One Test Method

Using only one (or a few) assertion in one test method is a good practice. It makes it easier
to find the cause of failed tests. Do not write tests that test too much.

©O© 00 9 O O & W N =

N = U
B W N RO

15
16
17
18
19
20
21
22
23
24
25
26

PHPUnit Basics 24

Fortunately, PHPUnit includes functionality to repeat tests like this. One method of doing so is with
a Data Provider. Using this, we can write tests like the following:

application/tests/libraries/Temperature_converter_test.php

<?php

class Temperature_converter_test extends TestCase

{
J*k
* @dataProvider provide_temperature_data
*/
public function test_FtoC($degree, $expected)
{
$obj = new Temperature_converter();
$actual = $obj->FtoC($degree);
$this->assertbEquals($expected, $actual, '', 0.01);
}
public function provide_temperature_data()
{
return |
// [Fahrenheit, Celsius]
[-40, -40.0],
[o, -17.8],
[32, 0.0],
[100, 37.8],
[212, 100.0],
1;
}
}

First, the provide_temperature_data() method was added. This is the method to provide data for
testing. It returns an array of arrays.

Second, the @dataProvider tag was added to the docblock of the test_FtoC() method. This sets a
data provider method name for the test method.

/>I<>l<
* @dataProvider provide_temperature_data

*/

PHPUnit Basics 25

The test_FtoC() method has two parameters ($degree and $expected). The values in the data
provider method are passed to them. The first array [-40, -40.0] is passed to the method as $degree
= -40 and $expected = -40.0.

PHPUnit repeats the test method for each array in the data provider method.

$ php phpunit.phar libraries/Temperature_converter_test.php
PHPUnit 4.8.10 by Sebastian Bergmann and contributors.

Time: 1.15 seconds, Memory: 12.50Mb

OK (5 tests, 5 assertions)

In the output, you should see five dots and 5 tests, 5 assertions. If you add the - -debug option,
you can see what’s happening more clearly.

$ php phpunit.phar --debug libraries/Temperature_converter_test.php
PHPUNnit 4.8.10 by Sebastian Bergmann and contributors.

Starting test 'Temperature_converter_test::test_FtoC with data set #0 (-40, -40.\
0)'.

Starting test 'Temperature_converter_test::test_FtoC with data set #1 (Q, -17.80\
000PVVVVVVVRYT10542735760100185871124267578125) ' .

Starting test 'Temperature_converter_test::test_FtoC with data set #2 (32, 0.0)'.

Starting test 'Temperature_converter_test::test_FtoC with data set #3 (100, 37.7\
999999999999971578290569595992565155029296875) ' .

Starting test 'Temperature_converter_test::test_FtoC with data set #4 (212, 100.\
0)'.
Time: 1.46 seconds, Memory: 12.50Mb

OK (5 tests, 5 assertions)

PHPUnit Basics 26

q& Testing Tip: Data Provider from Another Class

You can use a data provider from another class by specifying the class in the tag:
@dataProvider Bar::provide_baz_data. If the class is defined (or autoloadable) and the
provider method is public, PHPUnit will use it.

Incomplete Tests
We have written test code for the FtoC() method, but there is another method, CtoF (), in the class.
So we need to test this method, as well.

When we need to write a test method, but we have not finished it, we can use PHPUnit’s
$this->markTestIncomplete() method. This is a marker which can be used to indicate the test
is incomplete or not currently implemented.

Add the following method to the bottom of the test case class:

application/tests/libraries/Temperature_converter_test.php

public function test_CtoF()
{

$this->markTestIncomplete(
'This test has not been implemented yet.'

);

An incomplete test is denoted by an I in the output of the phpunit command, and the OK line is
yellow, not green, if your terminal has color capability.

$ php phpunit.phar libraries/Temperature_converter_test.php --no-coverage
PHPUnit 4.8.10 by Sebastian Bergmann and contributors.

Time: 817 ms, Memory: 7.50Mb

OK, but incomplete, skipped, or risky tests!

Tests: 6, Assertions: 5, Incomplete: 1.

If you put a test method without assertions and without $this->markTestIncomplete(), you will
see the green OK and you cannot determine whether a test is actually successful or just not yet
implemented.

PHPUnit Basics 27

Adding Tests

It is easy to add test code for the CtoF () method, because CtoF () is just the opposite of FtoC(). We
can reuse the data provider from the test_FtoC() method.

&’ Exercise

Please stop here and think about how you would write the test method.

Update the test_CtoF () method:

application/tests/libraries/Temperature_converter_test.php

V2
* @dataProvider provide_temperature_data
*/
public function test_CtoF($expected, $degree)
{

$obj = new Temperature_converter();
$actual = $obj->CtoF ($degree);
$this->assertbEquals($expected, $actual, '', 0.01);

The order of the test_CtoF () parameters is reversed.

This test case class is okay, but we can still improve it a bit with PHPUnit’s setUp() method.

Fixtures
A fixture is a known state for an application. If you run tests, you must set the world up in a known
state before running tests, because any difference in the state may cause changes in the test results.

PHPUnit has some methods for defining fixtures. In this test case, we don’t need to do anything,
because the class under test has no dependencies except for PHP’s internal function, round()°. The
round() function also has no dependencies, it just returns a calculated value.

However, we can still improve our test code by setting up our environment.

setUp()

setUp() is a method which is called before a test method is run. In other words, PHPUnit calls
setUp() before running each test method. If you use it, you can share the setup code and the state
over multiple test methods.

*http://php.net/en/round

http://php.net/en/round
http://php.net/en/round

PHPUnit Basics 28

--- a/Codelgniter/application/tests/libraries/Temperature_converter_test.php
+++ b/Codelgniter/application/tests/libraries/Temperature_converter_test.php

@@ -2,13 +2,17 @e

class Temperature_converter_test extends TestCase

{
public function setUp()

{

$this->obj = new Temperature_converter();

+ + o+ o+ 4+

/ ¥k
* @dataProvider provide_temperature_data
*/
public function test_FtoC($degree, $expected)
{
- $obj = new Temperature_converter();
- $actual = $obj->FtoC($degree);
+ $actual = $this->obj->FtoC($degree);
$this->assertbEquals($expected, $actual, '', 0.01);

@@ -29,8 +33,7 @@ class Temperature_converter_test extends TestCase
*/
public function test_CtoF ($expected, $degree)
{

- $obj = new Temperature_converter();

- $actual = $obj->CtoF ($degree);

+ $actual = $this->obj->CtoF ($degree);
$this->assertEquals($expected, $actual, '', 0.01);

0 The listing above is in a format called unified diff. It shows the difference between two
files. In short, remove the red line starting with - from the original file and add the green
line starting with + to get the new file. See Conventions Used in This Book for details.
Now, we no longer repeat “$obj = new Temperature_converter();” for each test.

tearDown()

PHPUnit also has tearDown() method which is called after a test method is run, allowing you to
clean up the environment after the test.

PHPUnit Basics 29

Note for ci-phpunit-test

Don’t forget to call parent: : tearDown(); if you override the tearDown() method.

Other Fixture Methods

« setUpBeforeClass() is a static method called before running the first test of the test case class
+ tearDownAfterClass() is a static method called after running the last test of the test case class

9 Note for ci-phpunit-test

Don’t forget to «call parent::setUpBeforeClass(); if you override the
setUpBeforeClass() method and parent::tearDownAfterClass(); if you override
the tearDownAfterClass() method.

Assertions

PHPUnit has many assertion methods. Here is a list of commonly-used assertions:

+ assertEquals($expected, $actual) checks whether two values are equal

+ assertSame($expected, $actual) checks whether two values are equal and the same type

« assertTrue($condition) checks whether a condition is true

« assertFalse($condition) checks whether a condition is false

« assertNull($variable) checks whether a variable is null

« assertInstanceOf($expected, $actual) checks the type of an object

« assertCount($expectedCount, $haystack) checks whether the number of elements in $haystack
matches $expectedCount

+ assertRegExp($pattern, $string) checks whether $string matchs the regular expression
$pattern

e assertContains($needle, $haystack) checks whether $needle is contained in $haystack,
this method works with strings ($needle is a substring of $haystack), arrays ($needle is an
element of $haystack), or classes which implement Iterator (can be called using foreach())

You can see all of the available methods in the PHPUnit Manual®.

Qt Testing Tip: Use Specific Assert Methods

Using specific assert methods is a good practice, because it expresses what you want to test
and you get more helpful error messages.

®https://phpunit.de/manual/4.8/en/appendixes.assertions.html

https://phpunit.de/manual/4.8/en/appendixes.assertions.html
https://phpunit.de/manual/4.8/en/appendixes.assertions.html

30

Testing a Simple MVC Application

5. Testing a Simple MVC Application

5.1 Functional Testing for Controller

Controller to Handle Static Pages

Pages Controller
Page Templates
Static Pages

Routing

Manual Testing with a Web Browser
Test Case for Page Controller

Checking Code Coverage

5.2 Database Testing for Models

Preparing the Database

Database Configuration
SQLite

MySQL

Dedicated Test Database
Database Migration

Dbfixture Controller
News Section

News_model Model
News Controller
Views

Routing

Manual Testing with a Web Browser

Database Fixtures

31

32

Unit Testing for Models

6. Unit Testing for Models

6.1 Why Should You Test Models First?

6.2 PHPUnit Mock Objects

Playing with Mocks
Partial Mocks
Verifying Expectations

6.3 Testing Models without Database

Testing the get_news() Method with Mocks

Creating a Mock Object for Cl_Loader
Creating Mocks for get_news()
Writing the Test Method

Creating Another Mocks

Extract the Method to Create Mocks

Writing Another Test Method
Testing the set_news() Method with Mocks

Mocks with Return Map
Writing the Test Method

6.4 With the Database or Without the Database?

Testing with Little Value

When You Write Tests without the Database

33

7. Testing Controllers

7.1 Why is Testing Controllers Difficult?
7.2 Test Case for the News Controller
7.3 Mocking Models

7.4 Authentication and Redirection

Installing lon Auth

Database Migrations

Routing
Manual Testing with a Web Browser
Testing Redirection

Mocking Auth Objects

7.5 What if My Controller Needs Something Else?

34

8. Unit Testing CLI Controllers

8.1 Dbfixture Controller
8.2 Faking is_cli()

8.3 Testing exit()

8.4 Testing Exceptions
8.5 Testing Output

8.6 Monkey Patching

Patching Functions

Patching Class Methods

8.7 Checking Code Coverage

35

9. Testing REST Controllers

9.1 Installing Codelgniter Rest Server

Fixing the Codelgniter Rest Server Code

9.2 Testing GET Requests

Getting All of the Data

Getting One User’s Data

9.3 Adding Request Headers
9.4 Testing POST Requests
9.5 Testing JSON Requests

9.6 Testing DELETE Requests

36

37

Browser Testing with Codeception 38

10. Browser Testing with Codeception

10.1 Installing and Configuring Codeception

What is Codeception?
Installing Codeception

What is Selenium Server?
Installing Selenium Server
Initializing Codeception
Configuring Acceptance Tests

Testing with Firefox

10.2 Writing Tests

Conventions for Codeception Acceptance Tests

Writing Our First Test

10.3 Running Tests

Running Selenium Server
Running the Web Server

Running Codeception

10.4 Browser Testing: Pros and Cons
10.5 Database Fixtures

10.6 Test Case for the News Controller

Database Fixtures

Testing Page Contents

Comments

11. Codelgniter Testing Guide

Thank you for evaluating this sample of Codelgniter Testing Guide.
To purchase this book, please visit https://leanpub.com/codeigniter-testing-guide.

39

https://leanpub.com/codeigniter-testing-guide

	Table of Contents
	Preface
	The Book at a Glance
	What You Need for This Book
	Who should read This Book?
	Why PHPUnit?
	Is This a CodeIgniter Book?
	Is Testing PHP Applications Difficult?
	Is Testing CodeIgniter Applications Difficult?
	Testing is Fun and Easy

	Conventions Used in This Book
	Errata

	What is Automated Testing?
	Primitive Example
	Manual Testing
	Automated Testing

	Why should you write test code?
	Finding the Middle Way
	What should you test?
	TDD or Not TDD

	Setting Up the Testing Environment
	Installing CodeIgniter
	Installing ci-phpunit-test
	Enabling Monkey Patching

	(Optional) Installing VisualPHPUnit
	Installing Composer
	Installing VisualPHPUnit
	Installing PHPUnit
	Configuring VisualPHPUnit
	Configuring PHPUnit XML Configuration File

	Installing PHPUnit
	(Optional) Installing PsySH
	Installing via Composer
	Installing Composer
	Installing CodeIgniter via Composer
	Installing ci-phpunit-test via Composer
	Installing PHPUnit via Composer
	(Optional) Installing PsySH via Composer

	Test Jargon
	Testing levels
	Unit Testing
	Integration Testing
	System Testing

	Testing Types
	Functional Testing
	Database Testing
	Browser Testing
	Acceptance Testing

	Code Coverage
	Fixtures
	Test Doubles
	Mocks and Stubs

	PHPUnit Basics
	Running PHPUnit
	Running All Tests
	Running a Specific Test Case

	Running PHPUnit via Web Browser
	Running Web Server
	Running All Tests
	Running a Specific Test Case

	Configuring PHPUnit
	XML Configuration File
	Command Line Arguments and Options

	Understanding the Basics by Testing Libraries
	Basic Conventions
	Data Provider
	Fixtures
	Assertions

	Testing a Simple MVC Application
	Functional Testing for Controller
	Controller to Handle Static Pages
	Manual Testing with a Web Browser
	Test Case for Page Controller
	Checking Code Coverage

	Database Testing for Models
	Preparing the Database
	News Section
	Manual Testing with a Web Browser
	Database Fixtures
	Test Case for the News Model
	Checking Code Coverage

	Unit Testing for Models
	Why Should You Test Models First?
	PHPUnit Mock Objects
	Playing with Mocks
	Partial Mocks
	Verifying Expectations

	Testing Models without Database
	Testing the get_news() Method with Mocks
	Testing the set_news() Method with Mocks

	With the Database or Without the Database?
	Testing with Little Value
	When You Write Tests without the Database

	Testing Controllers
	Why is Testing Controllers Difficult?
	Test Case for the News Controller
	Mocking Models
	Authentication and Redirection
	Installing Ion Auth
	Manual Testing with a Web Browser
	Testing Redirection
	Mocking Auth Objects

	What if My Controller Needs Something Else?

	Unit Testing CLI Controllers
	Dbfixture Controller
	Faking is_cli()
	Testing exit()
	Testing Exceptions
	Testing Output
	Monkey Patching
	Patching Functions
	Patching Class Methods

	Checking Code Coverage

	Testing REST Controllers
	Installing CodeIgniter Rest Server
	Fixing the CodeIgniter Rest Server Code

	Testing GET Requests
	Getting All of the Data
	Getting One User's Data

	Adding Request Headers
	Testing POST Requests
	Testing JSON Requests
	Testing DELETE Requests

	Browser Testing with Codeception
	Installing and Configuring Codeception
	What is Codeception?
	Installing Codeception
	What is Selenium Server?
	Installing Selenium Server
	Initializing Codeception
	Configuring Acceptance Tests

	Writing Tests
	Conventions for Codeception Acceptance Tests
	Writing Our First Test

	Running Tests
	Running Selenium Server
	Running the Web Server
	Running Codeception

	Browser Testing: Pros and Cons
	Database Fixtures
	Test Case for the News Controller
	Database Fixtures
	Testing Page Contents
	Testing Forms
	NewsCept

	Testing with Google Chrome
	Installing the ChromeDriver
	Configuring Acceptance Tests
	Running Selenium Server
	Running Tests

	CodeIgniter Testing Guide

