

Algebra-Driven Design
Elegant Software from Simple Building Blocks

Sandy Maguire

Cofree Press

First published 2020

Copyright © 2020, Sandy Maguire
All rights reserved.

Version 1.2 / 2023-11-09

Are you quite sure
that all those bells and whistles,
all those wonderful facilities of your so-called
“powerful” programming languages,
belong to the solution set
rather than to the problem set?

EDSGER W. DIJKSTRA

Contents

Foreword 1

Preface 7

1 Overview 10
1.1 Abstraction . 10
1.2 What is Algebra-Driven Design? 13
1.3 Conventions . 20

1.3.1 Why Haskell? 20
1.3.2 Reading Haskell 24
1.3.3 Understanding Haskell Types 32
1.3.4 Equational Laws 35

1.4 A Note on the Companion Library 40

I Designing Algebras 43

2 Tiles 44
2.1 Basic Building Blocks 46
2.2 Subdividing Space 57
2.3 Observations . 68
2.4 Generalization . 75

3 What Makes a Good Algebra? 83

iv

CONTENTS v

4 Scavenger Hunt 87
4.1 Input Filters . 102
4.2 Simultaneous Challenges 107
4.3 Challenge Completion 114
4.4 Simplification . 122
4.5 A Unified Observation 126
4.6 Symmetry . 133
4.7 Clues . 137
4.8 Generalization . 148

II Deriving Implementations 155

5 Tile Implementation 156
5.1 The Initial Encoding 157
5.2 Generating Tests . 167
5.3 An Efficient Implementation 185

6 Scavenger Hunt Implementation 198
6.1 The Filter Algebra 200
6.2 The Challenge Algebra 207
6.3 Testing It . 218
6.4 Implementation . 226

III Reference Material 247

7 Property-Based Testing 248
7.1 Basics . 251
7.2 Writing Good Generators 255
7.3 Showing . 267
7.4 Shrinking . 269
7.5 Using QuickCheck Interactively 272

CONTENTS vi

8 Effective QuickSpec 274
8.1 Signatures . 276
8.2 Motivating QuickSpec 278

8.2.1 QuickSpec for Designing Greenfield Projects . 278
8.2.2 QuickSpec for Analyzing Existing Projects . 280

8.3 Background Signatures 280
8.4 Predicates . 283
8.5 Naming Variables . 285
8.6 Observing Equalities 286
8.7 Creating QuickCheck Tests 287
8.8 Variable Usage . 289
8.9 Debugging QuickSpec Output 290

8.9.1 Common Warnings 290
8.9.2 Insane Laws 292
8.9.3 Poorly-Typed Laws 292
8.9.4 Unsimplified Laws 293

9 Common Algebraic Components 295
9.1 Properties . 296

9.1.1 Associativity 296
9.1.2 Identity . 298
9.1.3 Idempotency 300
9.1.4 Invertibility 302
9.1.5 Distributivity 304
9.1.6 Commutativity 306
9.1.7 Annihilation 306

9.2 Structures . 307
9.2.1 Semigroups 309
9.2.2 Monoids . 310
9.2.3 Groups . 311
9.2.4 Semilattices 312
9.2.5 Functors . 314
9.2.6 Applicative Functors 315

CONTENTS vii

Back Matter 320

Acknowledgements 320

Bibliography 322

Glossary 326

Foreword

The Restoring of Broken Parts
Algebra. We all studied it at school. We learned “algebraic laws”
such as commutativity

𝑥 + 𝑦 = 𝑦 + 𝑥

and associativity

(𝑥 + 𝑦) + 𝑧 = 𝑥 + (𝑦 + 𝑧)

so well that applying them became second nature, and we could
use them in long reasoning about equalities, without any need for
more complicated proof techniques such as proof-by-cases, proof-
by-induction, or proof-by-contradiction.

We may think of algebra in connection with proofs, but it is
not only useful for reasoning. It also lets us abstract away from
unimportant details. Every time we write 𝑎 + 𝑏 + 𝑐 + 𝑑 without
worrying where the brackets should go, we are taking advantage of
the associative law—the second equation above—and thinking at
a higher level of abstraction. This matters to mathematicians, and
it also matters to programmers. Every time you sum an array in
a loop,

1

CONTENTS 2

int sum(int a[], int n)
{ int sum=0;

for(int i=0;i<n;i++) sum = sum + a[i];
return sum;

}

you are relying on associativity, to guarantee that it doesn’t matter
which order you combine the array elements in. When laws break
down, there are problems. For example, the code above is actually
incorrect for summing an array of floats! Floating point addition
is not associative, and if you add up a million floats using a loop
like this one, you will get the wrong answer! Instead you can use
a clever algorithm called ‘Kahan summation’ to get a much better
one (look it up; next time you have a million floats to add up,
you’ll thank me). But the lesson is this: when algebraic laws fail,
the ground wobbles under our feet.

Computer scientists have been interested in the “algebra of pro-
grams” for more than half a century. In his classic 1966 paper ‘The
next 700 programming languages’, Peter Landin wrote:

For most programming languages there are certain
statements of the kind, ‘There is a systematic equiva-
lence between pieces of program like this, and pieces
like that,’ that nearly hold but not quite. … At first
sight it might appear pedantic to quibble about such
untidiness—‘What’s the point of having two different
ways of doing the same thing anyway? Isn’t it better to
have two facilities than just one?’ The author believes
that expressive power should be by design rather than
accident, and that there is great point in equivalences
that hold without exception.

The desire for “equivalences that hold without exception” is one of
the strong motivations for functional programming; that 𝑥−𝑥 = 0,
but

CONTENTS 3

getchar() - getchar() == 0

will usually be false in C, is a great impediment to algebraic rea-
soning.

However, the algebra of programs extends far beyond the usual
algebra of numbers. In his 1978 Turing Award lecture, John Backus
argued that the very constructions of a programming language,
which he called “functional forms”, should be chosen to support
algebraic reasoning:

“One chooses only those functional forms that not
only provide powerful programming constructs, but
that also have attractive algebraic properties: one
chooses them to maximize the strength and utility of
the algebraic laws that relate them to other functional
forms of the system.”

Backus advocated high-level combining forms such as map and re-
duce (fold), rather than low-level constructions such as sequencing
or iterating statements, which is echoed in the “point-free” pro-
gramming style popular in Haskell today.

Backus favoured algebra, over other kinds of reasoning, because
it is easy and practical:

The algebra of the programs described below is the work
of an amateur in algebra, and I want to show that it is
a game amateurs can profitably play and enjoy, a game
that does not require a deep understanding of logic and
mathematics. In spite of its simplicity, it can help one
to understand and prove things about programs in a
systematic, rather mechanical way.

Indeed, we can reason algebraically about programs, that one pro-
gram is the same as another, without any external notations or
tools. All we need is some middle school mathematics.

CONTENTS 4

We can go on to apply algebra not only to numeric expressions
and to programming language constructions, but to all our APIs!
In their classic 1978 paper ‘The Algebraic Specification of Abstract
Data Types’, Guttag and Horning argue that algebraic laws are the
right way to specify the behaviour of an API:

The set of axioms defines the meaning of the operations
by stating their relationships to one another.
They are easy to read and comprehend, thus facilitating
informal verification of the fact that they do indeed
conform to the intent of their creator.

When an API satisfies a rich set of laws, then the algebra gives us
freedom:

• We’re free to think at a higher level of abstraction, without
worrying about trivial differences that the algebra assures us
don’t matter.

• We’re free to optimize one piece of code to another with better
performance, without risking introducing a bug, because the
algebra assures us the two are equivalent.

Algebraic laws are a powerful approach to optimization, a key part
of Burstall and Darlington’s program transformation method, in
their classic 1977 paper ‘A Transformation System for Develop-
ing Recursive Programs’. Today you can even give performance-
enhancing algebraic laws about an API to the Glasgow Haskell
compiler, to be applied automatically by the optimizer to speed up
client programs whenever opportunity arises.

If algebraic laws are so useful, then clearly it is highly desirable
that an API should satisfy many of them. That means that algebra
can serve as a touchstone for good design. In 1982 Peter Henderson
invented “functional geometry”, a simple API for describing com-
plex pictures, with a beautifully simple algebra. Henderson later

CONTENTS 5

wrote: “It seems there is a positive correlation between the sim-
plicity of the rules and the quality of the algebra as a description
tool.” You will learn all about Henderson’s algebra later in this
book; remember his advice—when choosing between design alter-
natives, choose the one with the better algebra! If your algebra is
strong enough, you may even be able to calculate the implementa-
tion using it.

I experienced all this myself in the early 90s, when working on
a library for writing pretty-printers in Haskell. Almost every data-
structure needs a pretty-printer, and I was fed up writing the same
kind of code over and over again, and making the same kinds of
mistakes over and over again—getting the layout of pretty-printed
output right is surprisingly tricky. So I designed an API for pretty-
printers, but it wasn’t crystal clear what each operator should do,
with the result that my pretty-printers were still buggy in weird
cases! But now that I had an API, I could look for algebraic laws—
and tweak the meanings of the operators to satisfy them. That
clarified the design wonderfully, and eliminated my bugs. I was
even able to use my algebra to calculate a highly-efficient implemen-
tation, resulting in code that I could never have written by hand—
with confidence that the algebra would ensure that all the weird
corner cases were correctly handled. The paper I wrote as a result,
‘The Design of a Pretty-printing Library’ (1995) has spawned an
entire mini-field of algebraically-based pretty-printing.

Of course, when you try to apply algebra to your own code in
practice, you will immediately ask yourself questions like

• How do I know my code really satisfies this law?
• How can I figure out which laws my code satisfies?

Fortunately, today there are tools for Haskell that can answer these
questions for you—QuickCheck to test that a particular law is sat-
isfied, and QuickSpec to find a set of laws in the first place. So we
are in a much better position, today, to apply algebraic methods
to our code in practice, than the pioneers I quoted above.

CONTENTS 6

But to apply these methods yourself, there is much to learn—
and this is what this lovely book will teach you. What algebra is,
how to apply it, what to look for, how to let it guide your designs,
how to calculate your code, how to use the tools that are now
available to support the approach. It’s all illustrated with a new
take on Peter Henderson’s functional geometry, and a much larger-
scale and more realistic game application, with a down-to-earth
approach that you can put straight into practice. I am so glad that
Sandy has written it—it provides an excellent introduction to so
many ideas that I love.

Algebra enabled me to turn my pretty-printing code from a
useful-but-buggy mess into a thing of beauty. The word ‘algebra’
itself comes from the work of Persian mathematician Muhammad
ibn Musa al-Khwarizmi in the ninth century, and means “the restor-
ing of broken parts”. I think it’s quite appropriate.

May this book teach you how to restore broken parts.

John Hughes
Gothenburg, Sweden, September 2020.

Preface

For the last seven years, I’ve been fascinated by what I see to be
the central question in computing — “why isn’t functional program-
ming more popular?” In my eyes, functional programming (FP) is
easier to get right, requires less effort to produce, and comes with
stronger maintainability guarantees than the more conventional
paradigms afford. But if FP is so fantastic, why hasn’t it taken
over the world yet?

I can see only three possibilities.
The most obvious one is that functional programming simply

isn’t all that much better. But this flies directly in the face of
my experience and that of my colleagues in the FP community.
There are numerous stories about people coming from procedural
paradigms and falling in love with FP; but very few in which peo-
ple go the other direction. Common themes are that functional
programming is more “elegant,” and “easier to reason about,” and
that it “expands our way of thinking.”

Perhaps instead, it’s that the market doesn’t reward what func-
tional programming brings to the table. It seems a little far-fetched,
but maybe software doesn’t live and die by the speed at which it’s
written, its correctness, and its maintainability. By being smaller
than its procedural and object-oriented peers, functional program-
ming languages boast significantly fewer libraries, which is likely
part of the issue. It’s not that the market doesn’t reward speed,
merely that until we achieve library parity, the mainstream inertia

7

CONTENTS 8

will keep its adherents. There is probably some truth to this. But
I don’t think this explains the whole story.

However, the third option is that we FP-people are just not very
good at applying functional principles in large-scale, real-world ap-
plications. That is to say, maybe the problem isn’t with functional
programming; it’s that we collectively aren’t yet good enough with
it. It’s a common argument that functional programming works
well in the small, but in the large, you actually need to deal with
external systems and real-world complexity. It’s in this interaction
with reality that the cracks in FP begin to show.

I think FP’s inability to take over the world is this last point.
I believe that, as a community, we’re not very good at scaling
up functional thinking. There is no blame here; after all, we all
have significantly more experience engineering procedural systems
than we do functional ones. The issue is that it takes a lot of
false starts to move forward. In the mainstream world, these false
starts were already taken by our predecessors. But with functional
programming only now just starting to gain widespread attention,
we stand on our own, with little conventional knowledge to fall
back on.

Fortunately, we’re not alone in this endeavor. This book
presents a fundamentally different approach for thinking about
and writing software, one which plays to our strengths. It’s not a
novel idea by any means — while researching this book, I found
that most of my discoveries were first unearthed in the mid-70s
in the academic community. Academic researchers don’t have the
best track record for communicating their research outside of the
ivory tower, and I fear that’s what has happened here. An idea is
only as good insofar as it can be acted upon. But it’s important
to note that the material presented here is in no way my own
research.

To paraphrase Gwern Branwen: if this book has done anything
meritorious, it was perhaps simply putting more work into than
someone else would have. My goal has always been to help com-

CONTENTS 9

municate better ideas than the ones I come up with. That’s the
natural progression of learning, and after a year and two complete
rewrites of this book, boy have I ever learned a lot. I hope you do
too.

Sandy Maguire
Victoria, BC, Canada

September 2020

Chapter 1

Overview

1.1 Abstraction
This book is about abstractions — how to think about them, find
good ones, and wield them effectively. At first blush, this sounds
like a question of style; certainly, abstraction is abstraction is ab-
straction, right? No, not only is this not right; it is not even wrong.
When asked what abstraction is, many programmers will give one
of the following answers:

1. “It’s refactoring: pulling out duplicated code into a reusable
function.”

2. “It’s indirection: providing thin wrappers around calls, and
opening the doors for future extensibility.”

3. “It’s parameterization: putting adjustable knobs onto code
and solving the more general problem.”

Each of these is a means to a noble goal, but none of them is the
abstraction tackled here. Instead, we will take a broader, more
encompassing, easier-to-measure definition of what abstraction is.
Instead, to quote Dijkstra (1972):

The purpose of abstraction is not to be vague, but to

10

1.1. ABSTRACTION 11

create a new semantic level in which one can be abso-
lutely precise.

To us, abstraction is only that which creates new, precise semantic
domains. But what does this mean? A helpful abstraction is one
which gives us an interpretation of the world that we accept as
being true. All ideas are necessarily metaphors — reality is just
too complicated for human brains. No idea is, therefore, a ground
truth, but an excellent abstraction is one that never reminds you
of its falsehood. A useful abstraction fundamentally changes the
way you think and operate.

Spotting good abstractions is challenging, as they’re often mis-
taken for the way that the world really is. Perfect abstractions
are invisible. As an example, the computer hardware world makes
excellent abstractions. Software doesn’t actually proceed one in-
struction at a time: a modern CPU is decoding many hundreds of
instructions at a time, and invisibly parallelizing them. But short
of extremely-precise out-of-band timing attacks, you can’t ever ob-
serve your CPU is doing this. This one-instruction-at-a-time ab-
straction is so persuasive that we operate as though it’s true, and
thus it never violates our implicit assumptions about how the code
works. An excellent abstraction is out of sight and out of mind.

Likewise, are the fundamental building blocks of your computer
really logic gates? No — logic gates don’t really exist; they are
an abstraction describing how transistors behave when placed in
specific patterns. But the concept of logic gates is so persuasive
that we collectively forget that are they nothing but useful figments
of our collective imagination. Treat with suspicion anyone who says
abstractions are fundamentally leaky; maybe these people are just
bad at abstraction.

Other excellent abstractions are TCP/IP, Boolean algebra,
Newtonian physics — even mathematics and logic themselves.
These are good examples, not because they’re accurate reflections
of reality — but because we forget that they aren’t. Contrast
this sort of abstraction against what we usually encounter in

1.1. ABSTRACTION 12

software contexts. We’re all too familiar with wrappers promising
to unify disparate database interfaces, but which inevitably throw
exceptions when one of the backends doesn’t support an operation.
Or consider how web-servers encourage us to think of HTTP
headers as key/value pairs, but that a newline character in either
key or value will compromise its entire security model. These are
leaky abstractions, which is to say, worthless ones.

The goal of abstraction is to shield us from the reality be-
neath. If the real world somehow manages still to poke through,
the abstraction-wielder must be aware now of both ground truth
and the artificial, semantic layer on top. A careful practitioner
now has two sets of invariants he must respect. Simultaneously he
can’t be sure of how the abstraction maps to reality or whether
the leaks indicate a broken invariant somewhere. In essence, this
wrong abstraction has doubled its practitioner’s workload and her
burden of understanding. Take a moment to appreciate just how
common this is when writing software. Any system which gives you
a backdoor to escape the abstraction is necessarily one which ad-
mits its incompetence. Computer systems give us no escape hatch
to turn off instruction pipelining, nor can our programs opt-out of
logic gates and instead work directly with transistors. Good ab-
stractions don’t require escape hatches.

Our discussion on abstraction is merely foreplay to set the
stage for this book’s main contribution: that code is the wrong
abstraction for doing programming. There are infinitely many com-
puter programs, the astronomical majority of which we don’t want.
There are so many that we can’t want most of them. The argu-
ment is that unconstrained, implementation-first programming is
too expressive as it’s usually done. Code is just too powerful and
too low-level for even the most diligent among us to understand
truly any non-trivial program. Instead, we need better abstrac-
tions and tools for the decomposition, understanding, and solving
of problems.

If you take away nothing else from this book, it should be that

1.2. WHAT IS ALGEBRA-DRIVEN DESIGN? 13

code is a uniquely terrible tool for thought. The traditional thought
patterns taught in algorithms class — and sought out during soft-
ware interviews — is fundamentally detrimental to the problems
we’re trying to solve. It is a testament to human heroics and indus-
triousness that we can accomplish so much in the world of software
despite these handicaps. Unfortunately, it’s much more compli-
cated than it needs to be, reflected in part by how normalized bugs
are. Debugging is considered part of the job, and the vast majority
of software has security flaws. The cost of software also reflects this
pain: maintaining software is much more expensive than writing it
in the first place. In most industries, the up-front costs dominate.

Why is this? My answer is that all software tends towards
large systems and that large codebases are impossible for humans
to understand in full. Worse, there are not any widespread tools to
aid in that understanding. In an ideal world, the knowledge from
the original design is reusable, and can be reliably shared with
others. Imagine a world in which we all understood a codebase
as well as its original author. Or if we could ask the compiler to
ensure that our invariants always hold. Imagine if the abstractions
never leaked and needing to debug an underlying library were a
thing of the past. Imagine if the code were a byproduct of the
understanding, and wrote itself.

Algebra-Driven Design is a framework for making that future
the future.

1.2 What is Algebra-Driven Design?
Programs are meant to be read by humans and only
incidentally for computers to execute.
–Harold Abelson

Writing software is hard — likely one of the most difficult challenges
that individual humans have ever undertaken. Our brains aren’t
wired for it. We aren’t well-adapted for thinking about subtle state

1.2. WHAT IS ALGEBRA-DRIVEN DESIGN? 14

interactions that accumulate over hundreds of thousands of lines
of code. Code that is pedantic, written to describe, in excruciating
detail, tasks which are self-evident to humans. Computers are, by
and large, idiots, and the vast majority of a software engineer’s job
is understanding problems so well that you can explain them to
these uncomprehending machines.

It is this comprehension that is of paramount importance. As
this book argues, the software engineer’s ability to understand prob-
lems is her primary employable skill. The code is merely a byprod-
uct, serving only to explain this understanding to the computer —
uninteresting in its own right.

While it might sound like a truism to suggest we focus on the
understanding of problems rather than the programming of solu-
tions, consider just how difficult this is with conventional tools
and best practices. Our programming languages, the primary tool
for thought for many software engineers, give us no support in this
department. Our only facilities for writing code that is “easily un-
derstood” are to use descriptive variable names, write explanatory
comments, and to optimize our code “to be read” — whatever that
means.

But notice that these are all code-centric improvements. At
their core, they still privilege the program as the fundamental unit
of study — the very thing that is first and foremost an artifact
for a computer to execute. The program is not our understand-
ing of the problem and its solution; it is the end product of that
understanding. If we’re lucky, the program comes with comments
that are simultaneously insightful and true, though ensuring this
continues to be the case over time is probably asking too much.
For better or worse (but mostly just for the worse,) documenta-
tion is our only tool for preserving institutional understanding of
a codebase. Unfortunately, there is no tool in existence to ensure
our documentation stays in sync with the system it purports to
document. Indeed, tools like doctest can help show our examples
produce the output, but there are no tools that check the prose of

1.2. WHAT IS ALGEBRA-DRIVEN DESIGN? 15

our comments.
Of course, the program still exists, and in some sense, is the

source of truth of meaning. When documentation goes stale, we
are not stuck; we can always reverse-engineer understanding from
the program itself. Unfortunately, this state of affairs is almost syn-
onymous with “programming,” at least in most professional spheres.
Over time, software engineers get quite good at this detective work
— sussing out the “what” from the “how” — but it is essential to
remember that this is inherently a lossy procedure. Rather than
being able to page in the original author’s understanding of the
code, we must reinterpret it, reading between the lines. This is
more of an exercise of psychology than of engineering, as the goal
is to recreate another human’s state of mind.

Civilizationally-speaking, we are remarkably successful in this
endeavor of reverse-psychology. It’s a testament to all of the heroic
maintenance programmers out there who manage to keep these
software systems up and running. But let’s not mince words, this
is truly a Herculean undertaking. Programming is a fundamentally
challenging undertaking, yes, but it shouldn’t be nearly as hard as
it is. Nor need it be.

The irony here is in our rush to automate away other profes-
sions by providing better tools, by and large, we’ve forgotten to
apply this same mindset to our own field. Rather than trying
to solve underlying problems, which we are reasonably blind to,
we usually find a convenient workaround. For example, why do
we still represent and edit our source code as strings? Syntacti-
cally valid programs are a vanishingly small subset of all possible
strings. The number of valid edits to a program is minuscule com-
pared to the number of possible ways we can manipulate a string.
Yes, source code does need eventually to be stored as bytes some-
where on a filesystem. But memory too is just a series of bytes,
and unless you’re a low-level C programmer, you almost certainly
never think of memory like that. We don’t manipulate instances
of objects by explicitly twiddling their bytes in memory, so why do

1.2. WHAT IS ALGEBRA-DRIVEN DESIGN? 16

we still think about the raw representation of bytes when writing
source code? Continually improving text editors are our conve-
nient workaround here — but fundamentally, we are still thinking
in terms of bytes, as indicated by our frustration when these tools
“incorrectly” change our formatting.1

My point here is to illustrate that thinking about source code
as a string of bytes is merely working at the wrong level of abstrac-
tion. It isn’t difficult to imagine vastly better program editors2

than today’s best. Tools that edited programs as a tree and which
would show only options that type-checked or were otherwise sane.
Tools that would obsolete style arguments by displaying us code
in whatever presentation we preferred. Tools that could automat-
ically test the code we write to ensure it will never crash (or at
least, only crash expectedly) when given garbage inputs. Imagine
just how spectacular our tooling could be if we stopped insisting
on seeing our code as bytes instead of structured objects that could
be manipulated, transformed, inspected, and generated.

A core theme of Algebra-Driven Design is the insistence on
working at the proper level of abstraction and on creating new
levels if the available ones aren’t sufficient. This book isn’t here to
harp on about how source code shouldn’t be represented — or, for
that matter, experienced — in bytes. No, the argument presented
is that programs themselves are the wrong level of abstraction, and
what we can do about that. This book is about learning to focus
on the understanding and offloading most of the coding to our
computer tool.

In the same way that having a structured model of source code
would enable us to perform exciting transformations that are infea-
sible in the land of bytes, having a structured model of understand-
ing affords us a great deal of flexibility. By reifying our knowledge
of what our programs are, we can pass along machine-checked doc-

1Lisp is the notable exception to this point.
2It seems more natural to say “vastly better text editors,” but that would

be to miss the point entirely.

1.2. WHAT IS ALGEBRA-DRIVEN DESIGN? 17

umentation that not only describes our understanding of what’s
going on, but is guaranteed to stay relevant (see chapter 8). The
same machinery allows us to automatically generate thousands of
unit tests — not only for properties we understand but also for
emergent interactions between components that are necessary for
human understanding of the system at large (chapter 7). By hav-
ing our understanding explicitly modeled, it becomes an object of
study in itself, and we can play around with the formulation to
find better asymptotics or more elegant designs. Perhaps the most
exciting feature of this approach is that it allows us directly to
derive implementations from our understanding, and to discover
mind-bending optimizations that are unlikely to be found by intu-
ition alone.

In short, Algebra-Driven Design is an entirely new way of think-
ing about software engineering. To quote Elliott (2009), whose
thinking on this topic has greatly influenced this book:

Adopting the discipline illustrated [here] requires addi-
tional up-front effort in clarity of thinking, just as static
typing does. The reward is that the resulting designs
are simple and general, and sometimes have the feel of
profound inevitability.

If you are happy toiling in the mire of source code, resigned to
semantic games of “Telephone” between you and all other techni-
cians who have touched a project over the years, then this is not
the book for you. But if the above arguments have piqued your
interest, if you’ve been dissatisfied with the way things are done in
software, maybe this book can help.

This approach has three primary benefits over the usual intuition-
driven, cowboy-coding that often dominates our profession. The
first is that it allows us to focus on the fun part of software design,

1.2. WHAT IS ALGEBRA-DRIVEN DESIGN? 18

which is the design and understanding of the problem. It spares us
most of the work of dealing with the incidental complexity, inter-
facing with clunky libraries, figuring out how exactly to decompose
our dependency injection, and writing unit tests. These things are
necessary for a working, shippable program, but they aren’t soft-
ware engineers’ comparative advantage: understanding and dealing
with complex systems.

As a byproduct of reifying our thinking, we find the second
benefit: that we can offload a great deal of our work to the com-
puter tool. By having machine-checkable artifacts, the computer
can tell us when our laws combine in nonsensical ways, when our
reference implementation doesn’t do what the laws say, or when
our real implementation doesn’t line up with the reference. By do-
ing this thinking outside of our heads, we can ask the computer to
help suggest laws we might have missed, and generate thousands of
unit tests following our specification — testing for edge cases that
no human could ever consider “manually.”

Having saved the best for last, the final benefit of ADD is that
it allows us to derive implementations, if not “for free,” then at
least “greatly discounted.” The equality laws guiding us through
this entire process are excellent at finding the best “carve” of imple-
mentation through the design. The resulting programs are often
beautiful, and more often than not, feel discovered rather than en-
gineered. Through this approach, programs are elegant in their
simplicity and generality, and playful manipulation of the laws is
eerily good at finding asymptotic improvements. In essence, this
means that the approach is a reliable generator of insights — both
in design work and in coming up with intelligent optimizations.

In a genuine sense, Algebra-Driven Design is about designing
programs for humans. The unreasonable effectiveness of mathe-
matics seems related to the fact that it models things that humans
can understand formally. Algebra is not a study of the world; it is
a study of psychology. It is the study of those systems we humans
can think clearly about.

1.2. WHAT IS ALGEBRA-DRIVEN DESIGN? 19

With all of these significant advantages of Algebra-Driven De-
sign, it’s necessary to realize what it is not. ADD is incredibly
helpful in finding reusable abstractions, which is to say, it’s good
when designing libraries. Applications are particular instantiations
of reusable library components, and if you insist on thinking of an
application as completely non-reusable code, ADD cannot help you.
Instead, it encourages separating the core logic — the bits that
make your program your program — from the chaff of program-
ming tasks necessary to connect your program to the outside world.
Strong adherence to ADD pushes library code to the forefront and
resigns applications to thin wrappers around library functionality.

If you were never particularly good at math in school, take
heart! Despite having the word “algebra” in its title, Algebra-
Driven Design is not about the sort of algebra that causes night-
mares. The algebra here has nothing to do with numbers, nor
with arcane rules handed down by fiat from on high. The word
“algebra” specifies that we are working algebraically, which is to
say, thinking about what equations should hold, and manipulating
those rules to find answers. Those answers? The implementations
of the programs we want to write.

Furthermore, Algebra-Driven Design has nothing at all to do
with visual aesthetics. It is not about “designing a good user ex-
perience” or with “designing a pleasing webpage.” ADD is about
designing excellent software — which is to say, software that is
easy to understand, guaranteed to do what it says on the tin, and
flexible enough to be used in more ways than its original authors
ever could have intended.

Algebra-Driven Design isn’t particularly prescriptive. It’s an
interactive process, a discussion between your tools and your intu-
ition, helping refine ideas until they’re beautiful.

Finally, Algebra-Driven Design need not be a solo endeavor.
The entire point of giving laws and models is to share your under-
standing with others. Doing a formal review with your team of the
design is a great way to find missed opportunities for additional

1.3. CONVENTIONS 20

structure or more elegant decompositions. Furthermore, the de-
sign acts as a living document, as machine-verified documentation,
which gives future maintenance programmers (perhaps including
yourself) a direct-link into your mind at the time you created the
system, as well as to any improvements which have happened over
the years.

1.3 Conventions
This book uses a few conventions throughout its pages. While it’s
not necessary to discuss the full “hows and whys” here and now —
I’m sure you’re hungry to jump into the thick of Algebra-Driven
Design — we will need to cover the basics.

1.3.1 Why Haskell?
If you are already comfortable with the basic syntax of
Haskell, and roughly how its type system works, feel free
to skip to chapter 1.3.4.

This book presents its examples in Haskell and uses many com-
mon Haskell idioms. This might seem like a strange choice to
many readers — why have I not picked a better-known language?
Haskell is an odd duck of a language: it doesn’t do object-oriented
programming; it doesn’t have mutable variables; its type-system is
famously complicated, and its syntax is not inspired by C. So why
use it?

First and foremost, Haskell is a fantastic tool for thought. Its
seeming lack of “modern” features is not a flaw in the language;
indeed, their absence can help us see design details that are often
obscured by more conventional programming languages.

Haskell is considered a difficult language to learn, which is cer-
tainly true if you come from traditional procedural languages. But
rest assured, this is not a Haskell book. You won’t need more than
a passing understanding of the language’s syntax and a few high-

This section is available only in the full book..

Part I

Designing Algebras

43

Chapter 2

Tiles

Doing Algebra-Driven Design requires a tremendous shift in per-
spective; we want to sculpt our software in thought, having it
mostly worked out before we ever write a line of code. The rea-
son behind this is that cajoling computers into executing our ideas
takes effort, and empirically, programmers are likely to continue
sinking costs on a lousy implementation, rather than starting again
once they’ve figured out what they’re building. Working out de-
signs “in code” is akin to taking on technical debt before you’ve
even started.

Instead, we should reason through our design’s building blocks,
fully working out their properties and interrelationships. We will
hold off on writing any code for quite some time, which can be
disconcerting; there will be nothing to “get our hands on” and
interact with. We can’t “get it running, then get it right after.”
Thus, all of the playing must happen in our minds, which is not a
fair thing to ask of beginning practitioners. So we will start slowly,
and use an incredibly visual first example. Hopefully, this will help
convince you that it is possible to understand everything about a
library before even a single line of code is written to implement it.

Our example algebra follows closely from Henderson (2002),
and is one for constructing images out of recursively-subdivided

44

45

images, any of which might be modified by a simple spatial trans-
formation. For example, our algebra can describe images like fig-
ure 2.1, figure 2.2 and figure 2.3.

Figure 2.1: Example 1

Figure 2.2: Swirling mathematicians

The eventual algebra we will find is small and powerful — with
only modest additions, Henderson (2002) uses it to recreate some
of M. C. Escher’s artwork.

2.1. BASIC BUILDING BLOCKS 46

Figure 2.3: Sierpinski Carpet

2.1 Basic Building Blocks
We begin by noting that there exists a type for tiles, which appro-
priately we will name Tile:

data Tile

We can illustrate our tile-algebra with two terminal constructors:
haskell and church. Our final implementation will involve means
for a user to get custom images into the system. Still, for now, we
choose not to worry ourselves about image formats or input/output
and simply provide these two tiles by fiat.

haskell :: Tile
church :: Tile

When rendered, these tiles look like figure 2.4 and figure 2.5.
All terms in an algebra are built from terminal constructors (like
haskell and church above) and inductive constructors: ones which

2.1. BASIC BUILDING BLOCKS 47

Figure 2.4: haskell

Figure 2.5: church

2.1. BASIC BUILDING BLOCKS 48

“derive” new terms based on existing terms. For example, if we
have a Tile we might want to rotate it 90 degrees clockwise, as
shown in figure 2.6.

Figure 2.6: cw haskell

Let’s call this operation cw (“clockwise”). Because cw is an opera-
tion that consumes a Tile and produces a new one, its type is:

cw :: Tile -> Tile

Because cw works on any Tile, we can apply it to the result of itself
as in figure 2.7.
However, an interesting thing happens when we call cw on itself
four times — we somehow get back to where we started. If you
don’t believe me, compare figure 2.4 and figure 2.8! Because we all
have decades’ worth of experience in the domain of geometry, this
result isn’t particularly startling — which is always the danger
when analyzing a simple structure. But when you stop to think
about it, this property of “four times around gets you back where
you started” is quite the defining characteristic of rotation by 90
degrees. If the number of times we needed to call cw to get back

2.1. BASIC BUILDING BLOCKS 49

Figure 2.7: cw (cw haskell)

to the original Tile were not four but instead 𝑛, our rotation must
instead be by 360

𝑛 degrees. Thus, we can closely specify what it
is we’re talking about by requiring the following law always holds
true:

Figure 2.8: cw (cw (cw (cw haskell)))

2.1. BASIC BUILDING BLOCKS 50

Law: "cw/cw/cw/cw"

∀ (t :: Tile).
cw (cw (cw (cw t))) = t

It’s important to understand where this law comes from. Be-
cause of our problem’s underlying geometry, this law is foisted upon
us; we have no choice but to accept it. Our understanding of the
problem itself has uncovered this law, and there is nothing we can
do about it, short of changing our minds about what cw should do.
This is always the case when designing algebras; because an algebra
must have consistent semantics, decisions we make ripple through-
out the design, forcing constraints upon us. Our final design will
consist of dozens of equations like these. Any implementation of
the design is necessarily a solution to that system of equations.

As you work through this or any other algebra, keep in mind
the slogan,

It’s the equations that really matter!

The laws are of critical importance, as they are what foist meaning
upon our otherwise empty syntactic constructs.

Let’s return to our algebra. Of course, there is no reason to
privilege one direction of rotation over another. Let’s also provide
a ccw (“counterclockwise”) constructor with the same type, as il-
lustrated in figure 2.9.
We don’t require both cw and ccw — having both gives us no addi-
tional expressiveness than having only one. To see this for yourself,
note that rotating counterclockwise once is equivalent to rotating
clockwise three times, and vice versa. If we valued extreme par-
simony, we could certainly get by having only one of these com-
binators, but we will provide both because they are both useful.
However, having two ways of getting the same result gives us twice

2.1. BASIC BUILDING BLOCKS 51

Figure 2.9: ccw haskell

as many chances to write a bug. But we can subvert such a prob-
lem by simply giving a law relating cw to ccw; so long as the law
holds, there can be no bug here.

The most obvious relationship between cw and ccw is that they
are inverses of one another. Performing either after the other is
equivalent to doing nothing.

Law: "ccw/cw"

∀ (t :: Tile).
ccw (cw t) = t

2.1. BASIC BUILDING BLOCKS 52

Law: "cw/ccw"

∀ (t :: Tile).
cw (ccw t) = t

Again, these laws are nothing we have control over; they are
required to hold for any cw and ccw that could correspond to our in-
formal notions that these operations should rotate their arguments
90 degrees. In time, you will learn to analyze software in terms of
which laws it satisfies, that is to say, you will be able to visualize
software via its equations.

Our equations don’t just look like the sort of algebra you did
in grade-school; indeed, we can use them in just the same way. For
example, we can derive the fact that rotating clockwise three times
is equivalent to going counterclockwise once, via simple algebraic
manipulation. We start with the fact that rotating clockwise four
times is equivalent to doing nothing, then use ccw on both sides of
the equation, and then use the fact that ccw eliminates a cw:

ccw t
= ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ (via "cw/cw/cw/cw")

ccw (cw (cw (cw (cw t))))
= ⋅ (via "ccw/cw")

cw (cw (cw t))

This sort of algebraic manipulation is extraordinarily useful when
it comes to solving your algebra’s system of equations (that is to
say: actually implementing it.)

So far, our algebra isn’t very powerful. Let’s introduce some
new constructors. We will add the capability to mirror a tile hori-
zontally — illustrated by figure 2.10.

2.1. BASIC BUILDING BLOCKS 53

flipH :: Tile -> Tile

Figure 2.10: flipH haskell

Mirroring a tile is a fundamentally new idea in our algebra; it
simply can’t be expressed in terms of cw or ccw. Its major governing
law is that flipH is its own inverse:

Law: "flipH/flipH"

∀ (t :: Tile).
flipH (flipH t) = t

However, we note that mirroring a tile, rotating it twice, and
then mirroring it back is equivalent to just turning it twice. This
equation helpfully relates flipH to cw, entangling their semantics.
Again, this law is nothing other than a logical conclusion if flipH
flips about its X-axis and cw . cw simultaneously flips its X- and

2.1. BASIC BUILDING BLOCKS 54

Y-axes. This is a fact about our problem and is the only reasonable
conclusion if flipH and cw behave like our minds’ eyes say they do.

Law: "flipH/cw/cw/flipH"

∀ (t :: Tile).
flipH (cw (cw (flipH t)) = cw (cw t)

Exercise Prove flipH . cw^{2*n} . flipH = cw^{2*n}, where the
^ operation means repeated composition. For example, cw^4
= cw . cw . cw . cw.

A little mental geometry shows us that horizontally flipping a clock-
wise rotation is equivalent to rotating counterclockwise a horizontal
flip. This is a delightful law that relates cw to ccw under the flipH
transformation: to say, that

Law: "x-symmetry"

∀ (t :: Tile).
flipH (cw t) = ccw (flipH t)

Exercise Find a way of recreating figure 2.11, using only cw, ccw
and flipH.

The operation carried out in figure 2.11 is equivalent to flipping
a Tile vertically. Rather than require our users to perform the

2.1. BASIC BUILDING BLOCKS 55

Figure 2.11: Recreate this tile

complex set of operations to create it by hand, we will offer this
effect as a constructor in its own right.

flipV :: Tile -> Tile

Of course, flipV is also its own inverse, but two other interesting
equations as well – that we can derive it from cw, ccw and flipH,
and that performing both flips is equivalent to doing two rotations.

Law: "flipV/flipV"

∀ (t :: Tile).
flipV (flipV t) = t

2.1. BASIC BUILDING BLOCKS 56

Law: "ccw/flipH/cw"

∀ (t :: Tile).
flipV t = ccw (flipH (cw t))

Law: "flipV/flipH"

∀ (t :: Tile).
flipV (flipH t) = cw (cw t)

Exercise Derive the fact that flipV is its own inverse, using any
of the other laws we’ve given for our algebra.

Solution

flipV (flipV t)
= ⋅ (via "flipV")

flipV (ccw (flipH (cw t)))
= ⋅ (via "flipV")

ccw (flipH (cw (ccw (flipH (cw t)))))
= ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ (via "cw/ccw")

ccw (flipH (flipH (cw t)))
= ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ (via "flipH/flipH")

ccw (cw t)
= ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ (via "ccw/cw")

t

2.2. SUBDIVIDING SPACE 57

Exercise Derive a proof that flipV . flipH = cw . cw

Solution

flipV (flipH t)
= ⋅ (via "flipV")

ccw (flipH (cw (flipH t)))
= ⋅ (via "ccw")

cw (cw (cw (flipH (cw (flipH t)))))
= ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ (via "x-symmetry")

cw (cw (flipH (ccw (cw (flipH t)))))
= ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ (via "ccw/cw")

cw (cw (flipH (flipH t)))
= ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ (via "flipH/flipH")

cw (cw t)

2.2 Subdividing Space
It’s time to add some intrigue to our algebra. As great as transform-
ing square tiles is, it’s just not enough to capture our imaginations
for long. We will now introduce our killer feature: being able to
compose multiple tiles together. The most exciting of these is be-
side, which lays out one tile beside another.

Because our tiles are always square, we need to determine how
to close under this operation; recall, every operation in an alge-
bra must take valid inputs to valid outputs. Simply sticking one
square tile beside another would result in a rectangular image,
which would not be a square tile! Instead, we decide that to main-
tain closure, we will first subdivide our square into two rectangular
halves, and then fill each half, stretching the tiles to cover the space.
Our new operation is illustrated in figure 2.12.

2.2. SUBDIVIDING SPACE 58

beside :: Tile -> Tile -> Tile

Figure 2.12: beside church haskell

Of course — because of the closure property, we can freely nest
calls to beside, as in figure 2.13 and figure 2.14.

Figure 2.13: beside haskell (beside haskell haskell)

As you might expect, we should look for some laws relating be-
side to our other constructors. This should always be our modus

2.2. SUBDIVIDING SPACE 59

Figure 2.14: beside (beside haskell haskell) (beside haskell haskell)

operandi when working with algebras; for every new constructor
you add, look for a way to connect it to other things in your alge-
bra. Over time, this web of connections will strengthen and often
help us find properties that are too hard to deduce by intuition
alone. In this case, because beside is aligned along the X-axis, we
should search for equalities that preserve the X-axis. Interestingly,
some mental manipulation shows us that flipH distributes through
beside, but in doing so, flips the order of its arguments:

Law: "flipH/beside"

∀ (t1 :: Tile) (t2 :: Tile).
flipH (beside t1 t2) = beside (flipH t2) (flipH t1)

Exercise Prove flipH (flipH (beside t1 t2)) = beside t1 t2 in
two separate ways.

By some clever manipulation — reminiscent of how we derived

2.2. SUBDIVIDING SPACE 60

flipV, we can position one tile above another — as shown in fig-
ure 2.15.

Exercise Recreate figure 2.15, using beside, cw and ccw.

Figure 2.15: Recreate this tile

Again, rather than make our users jump through hoops, we will
just provide above as its own constructor.

above :: Tile -> Tile -> Tile

Law: "above"

∀ (t1 :: Tile) (t2 :: Tile).
above t1 t2 = cw (beside (ccw t1) (ccw t2))

2.2. SUBDIVIDING SPACE 61

Figure 2.16: above (beside (cw haskell) (cw (cw church))) (beside
church (ccw haskell))

Intuitively, we can also rewrite an above of besides as a beside
of aboves, so long as we swap the top-right and bottom-left tiles
when we do so.

Law: "above/beside"

∀ (a :: Tile) (b :: Tile) (c :: Tile) (d :: Tile).
above (beside a b) (beside c d) =
beside (above a c) (above b d)

The construction of four tiles in a square — as in figure 2.16 —
turns out to be a particularly common pattern. Let’s call it quad:

quad :: Tile -> Tile -> Tile -> Tile -> Tile

2.2. SUBDIVIDING SPACE 62

Figure 2.17: quad haskell (flipH haskell) (flipV haskell) (flipV
(flipH haskell))

Law: "quad"

∀ (a :: Tile) (b :: Tile) (c :: Tile) (d :: Tile).
above (beside a b) (beside c d) = quad a b c d

As an even more special case, we can rotate one tile as we move
through a quad, creating a sort of swirl effect as in figure 2.18. This
operation is given by:

swirl :: Tile -> Tile

and is subject to the law:

2.2. SUBDIVIDING SPACE 63

Figure 2.18: swirl (above church haskell)

Law: "swirl"

∀ (t :: Tile).
quad t (cw t) (ccw t) (cw (cw t)) = swirl t

We now come to final spatial operation, behind, which allows
us to layer one tile on top of another as in figure 2.19:

behind :: Tile -> Tile -> Tile

As great as all of these spatial constructions are, it will be helpful
to have another terminal constructor — one which fills the space
with a given color. Let’s call it color, and give it the type:

color
:: Double -- ^ red

2.2. SUBDIVIDING SPACE 64

Figure 2.19: behind church haskell

-> Double -- ^ green
-> Double -- ^ blue
-> Double -- ^ alpha
-> Tile

Each of these channels should be within the closed interval [0,1].
Of course, nothing in the typesystem requires this to be the case,
so we will need to constrain it with a law:

2.2. SUBDIVIDING SPACE 65

Law: "clamp channels"

∀ (r :: Double) (g :: Double) (b :: Double)
(a :: Double).

color r g b a =
color (clamp 0 1 r)

(clamp 0 1 g)
(clamp 0 1 b)
(clamp 0 1 a)

Figures figure 2.20, figure 2.21 and figure 2.22 give some illus-
trations of the different channels, and how alpha blending works.

Figure 2.20: color 1 0.8 0 1

The color combinator has the interesting property that is unaf-
fected by cw and flipH:

2.2. SUBDIVIDING SPACE 66

Figure 2.21: color 0 0.67 0.87 0.5

Law: "cw/color"

∀ (r :: Double) (g :: Double) (b :: Double)
(a :: Double).

cw (color r g b a) = color r g b a

Law: "flipH/color"

∀ (r :: Double) (g :: Double) (b :: Double)
(a :: Double).

flipH (color r g b a) = color r g b a

The semantics of color are “obvious” to a human, but it’s not
entirely clear how to specify such an operation. Of particular chal-

2.2. SUBDIVIDING SPACE 67

lenge is its interaction with behind as demonstrated in figure 2.22,
where we should expect alpha compositing to occur. We can at-
tempt a partial specification by noting what happens with extreme
alpha values. If the alpha channel of the color in front is fully set,
it doesn’t matter what was behind it:

Figure 2.22: behind church (color 0 0.67 0.87 0.5)

Law: "opaque"

∀ (t :: Tile) (r :: Double) (g :: Double) (b :: Double).
behind t (color r g b 1) = color r g b 1

Likewise, if there is zero alpha, it’s the same as having not
invoked behind at all.

This section is available only in the full book..

Part II

Deriving
Implementations

155

Chapter 5

Tile Implementation

In chapter 2, we specified the algebra for an image tiling algebra.
As a quick refresher, our algebra allows us to build images by sub-
dividing space into “tiles,” which can be rotated and flipped. Our
public interface eventually ended up looking like this:

data Tile a
instance Functor Tile
instance Applicative Tile

rasterize :: Int -> Int -> Tile a -> [[a]]

cw :: Tile a -> Tile a
ccw :: Tile a -> Tile a
flipH :: Tile a -> Tile a
flipV :: Tile a -> Tile a

quad :: Tile a -> Tile a -> Tile a -> Tile a -> Tile a
swirl :: Tile a -> Tile a

beside :: Tile a -> Tile a -> Tile a
above :: Tile a -> Tile a -> Tile a

156

5.1. THE INITIAL ENCODING 157

empty :: Monoid a => Tile a
behind :: Monoid a => Tile a -> Tile a -> Tile a

We are left now with the task of actually implementing this thing.
Unfortunately, computers are unable to execute our specifications
directly, so we must translate our design into code. Our path for
getting there will be incremental, done in three distinct phases.
First, we will implement a solution that is naive but obviously-
correct. Second, we will use the naive implementation to generate
a broad suite of regression tests automatically. Finally, we will give
an innovative, optimized implementation, using our new test suite
to ensure we haven’t introduced any bugs along the way.

5.1 The Initial Encoding
By construction, every algebra gives rise to an “obvious” implemen-
tation called its initial encoding. You might be familiar with initial
encodings under the object-oriented concept “interpreter pattern.”
If not, the initial encoding is a fancy name for implementing each
of our algebra’s constructors as a data constructor directly in the
implementation language.

The idea is this: we will build an explicit data structure rep-
resenting our tile. Later, when we go to “interpret” it — that is,
rasterize it — the drawing routines can traverse this tree, doing
different drawing operations for every different sort of node. An
initial encoding is characterized by creating a tree of data whose
nodes correspond precisely with the algebraic constructors. For
this reason, we might refer to “trees” and “nodes” in the following
section, but these refer only to terms and constructors, respectively.

To illustrate the initial encoding, one of the infinitely many
ways of implementing Tile is as follows:

5.1. THE INITIAL ENCODING 158

data Tile a where
Cw :: Tile a -> Tile a
Ccw :: Tile a -> Tile a
FlipH :: Tile a -> Tile a
FlipV :: Tile a -> Tile a
Quad :: Tile a -> Tile a -> Tile a -> Tile a -> Tile a
Swirl :: Tile a -> Tile a
Beside :: Tile a -> Tile a -> Tile a
Above :: Tile a -> Tile a -> Tile a
Empty :: Monoid a => Tile a
Behind :: Monoid a => Tile a -> Tile a -> Tile a
Fmap :: (a -> b) -> Tile a -> Tile b ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1
Pure :: a -> Tile a ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 2
Ap :: Tile (a -> b) -> Tile a -> Tile b ⋅ ⋅ ⋅ ⋅ ⋅ 3

The constructors marked by 1 , 2 and 3 correspond respec-
tively to the (implicit) ways of building tiles via fmap, pure, and
(<*>).

You might be wondering why rasterize doesn’t appear here. It
doesn’t, by virtue of not being a constructor. It’s an observation
over our algebra. Rasterizing is our only way to get data out of
the system; it cannot help us get information in.

With the definition of Tile in place, we can give a trivial im-
plementation for every constructor in our algebra:

cw :: Tile a -> Tile a
cw = Cw

ccw :: Tile a -> Tile a
ccw = Ccw

flipH :: Tile a -> Tile a
flipH = FlipH

5.1. THE INITIAL ENCODING 159

-- etc

By giving a Haskell constructor for every constructor in our alge-
bra, we can build a one-to-one mapping between the terms in our
algebra and a “syntax tree” for our algebra in Haskell. There is
absolutely no computational power here; all we have managed to
compute is a tree in memory that corresponds precisely with a term
in our algebra. We can now imagine implementing the rasterize
observation by pattern matching on this tree — doing the “right
thing” in each case.

But this one-to-one mapping is not the whole story; it doesn’t
necessarily satisfy the laws that it is supposed to. For example,
"flipH/flipH" states that flipH . flipH = id, but this is decidedly
not true given the definition of flipH above. We can force the laws
to hold by fiat, simply by performing some pattern matching in the
definition of flipH:

flipH :: Tile a -> Tile a
flipH (FlipH t) = t ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1
flipH t = FlipH t ⋅ 2

This new definition, at 1 , checks a term to see if its root is already
a FlipH node, and if so, removes it — satisfying the law that flipH
. flipH = id. If this is not the case, as in 2 , we instead add a
FlipH node. As another example, we expect that cw . cw . cw .
cw = id, and can encode it as follows:

cw :: Tile a -> Tile a
cw (Cw (Cw (Cw t))) = t ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1
cw t = Cw t

5.1. THE INITIAL ENCODING 160

Because it’s non-obvious, we should note that it’s vital that there
are only three Cw data constructors at 1 . The fourth comes from
the definition of cw itself.

You can imagine how a patient and assiduous implementer
could go through every equation in our algebra and write them,
one by one, as pattern matches. Such an approach would certainly
ensure that every law holds, but it quickly becomes an untenable
amount of work for even moderately-sized algebras.

Instead of doing all this work by hand, we can employ our
equations themselves to simplify the task. The high-level idea here
is that we can pick a core set of “primitive” operations in our
algebra, and use our laws to rewrite every other combinator in
terms of the primitives. Instead of the massive thirteen-constructor
definition of Tile above, we can distill it down into only these five:

data Tile a where
Cw :: Tile a -> Tile a
FlipH :: Tile a -> Tile a
Above :: Tile a -> Tile a -> Tile a
Pure :: a -> Tile a
Ap :: Tile (a -> b) -> Tile a -> Tile b

Where did these five come from, you might wonder. The answer
is that they come from trial and error, and I have saved my read-
ers from the trial on this particular example. Picking primitives is
more of an art than a science; we can allow our intuition and imple-
mentation experience to suggest constructors to use as primitives.
There is little consequence for picking a lousy set of primitives; if
it’s not minimal, you’ll have to do a bit more work. If it’s insuffi-
cient to implement the entire algebra, you’ll get stuck within five
minutes and can then backtrack.

In the case of Tile above, our primitive data constructors cor-
respond with constructors in our algebra, but this is not a require-

5.1. THE INITIAL ENCODING 161

ment. We will look at an example of a drastically different repre-
sentation in chapter 6.

We still should give the pattern matching by-fiat laws when
implementing the algebra’s constructors in terms of these data
constructors. But by having fewer syntactical forms in the mix,
we have fewer combinations of laws we need to enforce manually.
Let’s first give the remaining primitive implementations:

above :: Tile a -> Tile a -> Tile a
above = Above

instance Applicative Tile where
pure = Pure
(<*>) = Ap

The trick is now to find derivations of the other, non-primitive
constructors in terms of these primitives. To illustrate this, we’d
like to find a derivation of ccw:

ccw t
= ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ (via "cw/cw/cw/cw")

ccw (cw (cw (cw (cw t))))
= ⋅ (via "ccw/cw")

cw (cw (cw t)))

Since we have the implicit primitive law that Cw = cw, we have
derived an implementation of ccw in terms of our primitives. We
choose to use cw here rather than the data constructor Cw directly
because cw performs the automatic simplification of "cw/cw/cw/cw".
This derivation maps directly to an implementation:

5.1. THE INITIAL ENCODING 162

ccw :: Tile a -> Tile a
ccw t = cw (cw (cw t))

or, in its eta-reduced form:

ccw :: Tile a -> Tile a
ccw = cw . cw . cw

In general, it’s imperative to be very careful in our use of the
primitive forms. We have chosen to implement ccw here in terms
of the constructor cw rather than the primitive Cw. Why is this?
It’s to ensure that our by-fiat laws get a chance to simplify the
expression. If we instead implemented ccw in terms of Cw, it’s easy
to see how ccw . ccw would produce six nested Cw nodes — which is
a state impossible under the implementation of cw. In this case, it
probably doesn’t matter — but it can lead to obscure bugs. Thus,
it is prudent to use only a primitive form to implement exactly
one constructor, if at all possible. Doing so will save you many
headaches down the line.

To look at a more complicated derivation, let’s take flipV:

∀ (t :: Tile).
flipV t

= ⋅ (via "rotated flipH")
ccw (flipH (cw t)) ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1

= ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ (via "cw/cw/cw/cw")
ccw (cw (cw (cw (cw (flipH (cw t))))))

= ⋅ (via "ccw/cw")
cw (cw (cw (flipH (cw t))))

This derivation goes all the way to our primitive forms cw and flipH,
which is technically the right way to go about things. However,

5.1. THE INITIAL ENCODING 163

you’ll notice that the line of the proof marked by 1 is already
a perfectly good implementation, as the remainder of the proof
is simply expanding out the implementation of ccw. So long as
we approach these derivations in a topologically sorted manner —
that is, being careful to use only those constructors we have already
implemented — we can shave off a good deal of the derivation work.
Working “all the way through” a derivation is more important when
you haven’t enforced any equations in your implementation by fiat.
We can thus give an implementation for flipV:

flipV :: Tile a -> Tile a
flipV = ccw . flipH . cw

The remainder of the implementations follow in this pattern of
using previously-implemented constructors. Each is an easy, one-
step derivation. Let’s start with above:

beside t1 t2
= ⋅ (via "above")

ccw (above (cw t1) (cw t2))

beside :: Tile a -> Tile a -> Tile a
beside t1 t2 = ccw (above (cw t1) (cw t2))

Nice. Again, the implementation follows directly from the laws.
This is also the case for quad:

quad t1 t2 t3 t4
= ⋅ (via "quad")

above (beside t1 t2) (beside t3 t4)

5.1. THE INITIAL ENCODING 164

quad :: Tile a -> Tile a -> Tile a -> Tile a -> Tile a
quad t1 t2 t3 t4 = above (beside t1 t2) (beside t3 t4)

and again for swirl:

swirl t
= ⋅ (via "swirl")

quad t (cw t) (ccw t) (cw (cw t))

swirl :: Tile a -> Tile a
swirl t = quad t (cw t) (ccw t) $ cw $ cw t

In order to give an implementation of fmap, we can turn to the
applicative laws:

fmap f t
= ⋅ (via "pure/ap")

pure f <*> t

which in turn is the delightful (and applicable for every applicative
functor) instance:

instance Functor Tile where
fmap f t = pure f <*> t

Finally, empty and behind turn out to be specific cases of the ap-
plicative operations when generalized to monoids:

5.1. THE INITIAL ENCODING 165

empty :: Monoid a => Tile a
empty = pure mempty

behind :: Monoid a => Tile a -> Tile a -> Tile a
behind = flip (liftA2 (<>))

Et voila! We automatically have a lawful set of implementations
for our initial encoding. That said, there is still no code that gen-
erates an image — our observations are still unimplemented. But
this is a problem easily fixed; we need only give an interpreter for
the Tile syntax tree. Here again, the laws suggest another imple-
mentation, one which operates directly over two-dimensional lists.
Such a thing seems like it would be notoriously slow and inefficient
— because it will be — but remember, we’re looking only for an
obviously-correct implementation, not a good one. That will come
later.

We proceed by implementing rasterize :: Int -> Int -> Tile
a -> [[a]] as a piece-wise fashion, pattern matching on each data
constructor of Tile. The Pure case is simplest; it corresponds to
a pixel matrix with a constant value in every cell. Recalling that
the result of rasterize should be row-major, we can construct a
row with the right width of pixels via replicate, and then replicate
that to get the correct height.

rasterize w h (Pure a) = replicate h $ replicate w a

When designing the algebra, we took great care also to provide a
rasterize' observation which is equivalent to rasterize, but which
is in a form more amenable to applicative homomorphisms. We can
exploit that machinery now in order to implement Ap:

rasterize w h (Ap f a) =
coerce (rasterize' w h f <*> rasterize' w h a)

5.1. THE INITIAL ENCODING 166

Horizontally flipping an image is also easy; we simply rasterize the
underlying tile and then reverse each of its rows:

rasterize w h (FlipH t) = fmap reverse $ rasterize w h t

Rotation of a tile is a little trickier. Intuition tells us that rotating a
non-square matrix will swap the width and height dimensions, and
since we would like the result of cw to have the specified dimensions,
we must swap the width and height that we give when rasterizing
the inner tile:

rasterize w h (Cw t) = rotate2d $ rasterize h w t
where
rotate2d = fmap reverse . transpose

Our only remaining primitive to interpret is Above, which concep-
tually builds two half-height tiles and glues them vertically. This
definition again maps directly to an implementation:

rasterize w h (Above t1 t2) =
rasterize w (div h 2) t1 <>
rasterize w (h - div h 2) t2 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1

At 1 we use h - div h 2 as the second width in case the desired
height is odd — we wouldn’t want to drop a pixel accidentally.
And just like that, we have plucked a fully working implementation
seemingly out of thin air.

Finally, let’s give some instances for Tile. It admits obvious
Semigroup and Monoid instances, simply by lifting an instance from
the “pixel” type:

5.2. GENERATING TESTS 167

instance Semigroup a => Semigroup (Tile a) where
(<>) = liftA2 (<>)

instance Monoid a => Monoid (Tile a) where
mempty = pure mempty

Additionally, we’ll need a Show instance in order for QuickCheck
to test our properties later. This instance unfortunately can’t be
automatically derived due to the existential type in Ap, but we can
write it by hand without much effort:

instance Show a => Show (Tile a) where
show (Cw t) = "cw (" ++ show t ++ ")"
show (FlipH t) = "flipH (" ++ show t ++ ")"
show (Above t1 t2)
= "above (" ++ show t1 ++ ") (" ++ show t2 ++ ")"

show (Pure a) = "pure (" ++ show a ++ ")"
show (Ap _ _) = "ap _ _" ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1

There is no Show instance for the existentially quantified type in Ap,
so we ignore those two arguments when printing ap terms at 1 .
This isn’t a perfect solution by any means, but it’s practical and
gets the job done.

5.2 Generating Tests
In the previous section, we followed our algebra’s rules to derive an
implementation automatically. The resulting code, while inefficient
and naive, is overwhelmingly simple and is guaranteed to follow
our specification. The next step is to ensure that the specification
corresponds with our intuition, as the specification is only useful
insofar as it helps us solve problems we are interested in.

5.2. GENERATING TESTS 168

Here again, we can automate a great deal of the tedium involved
in checking the implementation. Most systems are verified using
hand-written unit tests: little checks that the software behaves
predictably in particular scenarios. Unit tests are a good start
but suffer from the problem that they are boring and written by
humans. To quote Hughes (2016):

Imagine writing a suite of unit tests for software with,
say, 𝑛 different features. Probably you will write 3-4
test cases per feature. This is perfectly manageable —
it’s a linear amount of work. But, we all know you will
not find all of your bugs that way, because some bugs
can only be triggered by a pair of features interacting.
Now, you could go on to write test cases for every pair
of features — but this is a quadratic amount of work,
which is much less appealing.

Claessen and Hughes (2000) present property tests as an alterna-
tive to unit tests. Property tests can be thought of as templates for
generating unit tests; by specifying exactly how input and output
should be related, a property testing system can create randomly
generated inputs and ensure that the property always holds. If we
generate ten thousand random inputs, and the property holds for
each one, we should be pretty confident that our code is working
as intended. Of course, equality is undecidable in general, but af-
ter ten thousand tests, if the two haven’t been shown yet to be
unequal, they probably never will.

Property testing often requires a better understanding of the
software under test, as its authors must be able to describe classes
of correctness, rather than instances of correctness. However, this
additional effort is well rewarded; property tests can be used to
stamp out an arbitrary number of unit tests, driving our confidence
of the system asymptotically up to 100%.

But in this section, we will take the automation ladder one
rung higher, and automatically generate our property tests. How

5.2. GENERATING TESTS 169

is such a thing possible? By giving a reference implementation
and a description of the constructors of our algebra to QuickSpec
(Smallbone et al. (2017)) — a theorem searching program — it
can simply try every possible term, and use property testing to see
which ones are equal.

By treating the matching terms found by QuickSpec as new
equations of our algebra, we are, in essence, discovering property
tests that must be true of any correct implementation. The result?
An automatically generated suite of regression tests.

We will present just enough of QuickCheck and QuickSpec in
this section to get our work done, but each is given a more robust
treatment in chapter 7 and chapter 8, respectively.

Our first step is to write a generator for tiles, which is a way of
creating random tiles. Generators run in the Gen monad provided
by the QuickCheck library, and come with a few primitive actions
for picking elements at random. Generators in QuickCheck are usu-
ally given via an Arbitrary instance, which defines an arbitrary
function used to produce random values.

instance (CoArbitrary a, Arbitrary a)
=> Arbitrary (Tile a) where

arbitrary = sized $ \n -> ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1
case n <= 1 of

True -> pure <$> arbitrary ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 2
False -> frequency ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 3

[(3,) $ pure <$> arbitrary ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 4
, (9,) $ beside <$> decayArbitrary 2 ⋅ ⋅ ⋅ ⋅ 5

<*> decayArbitrary 2
, (9,) $ above <$> decayArbitrary 2

<*> decayArbitrary 2
, (2,) $ cw <$> arbitrary
, (2,) $ ccw <$> arbitrary
, (4,) $ flipV <$> arbitrary
, (4,) $ flipH <$> arbitrary

5.2. GENERATING TESTS 170

, (6,) $ swirl <$> decayArbitrary 4
, (3,) $ quad <$> decayArbitrary 4

<*> decayArbitrary 4
<*> decayArbitrary 4
<*> decayArbitrary 4

, (2,) $ (<*>)
<$> decayArbitrary @(Tile (a -> a)) 2
<*> decayArbitrary 2

]

decayArbitrary :: Arbitrary a => Int -> Gen a
decayArbitrary n = scale (`div` n) arbitrary

Every generator has access to an implicit size parameter provided
by the testing engine, which roughly corresponds to how compli-
cated the generated term should be. At 1 we get access to the
size parameter via the sized function. If the size is less than or
equal to one, we simply return a pure tile whose color is itself
arbitrary. This check ensures that our arbitrary tile eventually
terminates.

At 3 , we use the frequency combinator to assign random
weights to the different possibilities of Tile constructors. In 4 we
also build an arbitrary pure colored tile, with a weight of 3. At 5
however, we give a weight of 9 — meaning three times more likely —
to the beside constructor, because it results in more complex tiles.
Rather than filling in the parameters of beside with arbitrary tiles
directly, we instead use the decayArbitrary 2 combinator, which
asks for a tile that is half as complicated as the one we are being
asked to generate. In this way, we are “splitting our complexity
budget” between the two sub-tiles. Due to polymorphism, the call
to arbitrary at 5 creates a Tile a, but at 4 it creates just a
bare a.

Notably missing from the definition of arbitrary are the behind

5.2. GENERATING TESTS 171

and empty constructors. This is a technical limitation; those con-
structors require a to be a monoid, but nothing else in the algebra
does. If we included them in the list, we’d only generate tiles of
monoids, which is somewhat annoying for testing purposes. We
console ourselves with the understanding that empty and behind
are specializations of pure and (<*>) respectively, both of which
get generated by this instance. In a real codebase, you’d probably
want to do some trickery to allow both instances to exist, but such
a thing is out of this book’s scope.

The remainder of the instance carries on in this way, listing
the constructors with relative weights, and building them out of
arbitrary smaller pieces. There is nothing of real interest here;
every generator you write should have the same shape, containing:

1. a check of the size parameter, terminating in a simple con-
structor if required.

2. a list of every constructor of the algebra, each lifted into the
Gen monad, with arbitrary children.

It’s extremely important that your generator use the algebra’s
constructors, and not the data constructors (that is, it should use cw
instead of Cw.) Recall that our algebraic constructors possibly con-
tain pattern matching that implements by-fiat laws; thus, building
terms out of the data constructors directly is likely to break your
invariants.

As it happens, this Arbitrary instance (and one for Color, elided
here) is all that’s required for us to generate random tiles — some
samples of which are given in figures 5.1, 5.2, 5.3.
Our next course of action is to teach the testing program about
what equality means. Recall that we are explicitly not using what-
ever notion of equality Haskell gives us, instead choosing to reason
via "obs eq", reproduced here:

5.2. GENERATING TESTS 172

Figure 5.1: Random Tile 1

Figure 5.2: Random Tile 2

5.2. GENERATING TESTS 173

Figure 5.3: Random Tile 3

Law: "obs eq"

∀ (t1 :: Tile) (t2 :: Tile).
(∀ (w :: Int) (h :: Int).
rasterize w h t1 == rasterize w h t2) => t1 = t2

This law states that two tiles t1 and t2 are equal if and only
if they rasterize to the same pixels for every imaginable width
and height. Regardless of the actual memory layout for our tiles,
this is the metric by which we’d like to consider two tiles equal.
This notion can be encoded by giving an instance of the Observe
typeclass from the quickspec library.

Observe allows us to describe observational equality between
terms — possibly requiring quantified arguments. As an interface,
it requires us to fill in one function, observe, which has a parameter
for the quantified arguments, and another for the term we’d like
to observe. These arguments are generated randomly via the prop-
erty testing Arbitrary machinery, and two terms require observed

5.2. GENERATING TESTS 174

equality for every input thrown at them.
We’d like to write an instance that looks like this:

instance Observe
(Small Int, Small Int) ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1
[[a]] ⋅ 2
(Tile a) ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 3
where

observe (Small w, Small h) t
= rasterize (max 1 w) (max 1 h) t ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 4

This says that given two small integers (1) corresponding to the
width and height, we can observe a Tile a value (3) as a [[a]]
(2). We implement the observe function as rasterize at 4 ,
ensuring that the width and height are both at least one.

While this instance is what we want conceptually, it doesn’t
work as written. The issue is that pesky universally quantified
type a; we have no guarantees that it can be observed. The fix is a
little mind-bending: we must introduce an Observe constraint for
a, and observe our matrix of pixels in terms of the observation on
a. The working instance is listed below, but it’s important to keep
in mind that this is an implementation detail, not a moral one.

instance Observe test outcome [[a]]
=> Observe

(Small Int, Small Int, test)
outcome
(Tile a) where

observe (Small w, Small h, x) t
= observe x (rasterize (max 1 w) (max 1 h) t)

Our new Observe instance gives us access to the (=~=) operator,
which creates a property test showing observational equality be-

5.2. GENERATING TESTS 175

tween two terms. For example, we can now test "cw/cw/cw/cw"
experimentally:

> quickCheck $ cw @Bool . cw . cw . cw =~= id
+++ OK, passed 100 tests.

We need to specify @Bool to tell Haskell which sort of tiles to gen-
erate — left to its own devices it will pick the single-valued type
() which is always equal to itself, and thus particularly unhelpful
for testing equality. The quickCheck function then generated 100
different random tiles and checked to see that each was observa-
tionally equal to rotating the tile four times clockwise. In essence,
it created one hundred unique unit tests, and our implementation
passed each!

Compare the amount of code we wrote in this section to the
amount of code we would have needed to write to create one hun-
dred unit tests. When you take into account that the number one
hundred is arbitrary and could just as easily have been ten thou-
sand (use quickCheckWith stdArgs {maxSuccess = 10000} instead),
perhaps the power of this approach becomes more apparent to you.

More amazingly, this is just the tip of the iceberg. While we
certainly could go and write property tests for every law we discov-
ered in chapter 2, it feels like a wasted effort. After all, every one
should pass, since our implementation is derived from those same
laws. Of course, just because they should pass doesn’t mean they
will, and we must still exercise prudence. But rather than write
these tests ourselves, let’s get the computer to do it for us.

Here is where the quickspec library comes in. We need only
to write a signature of our algebra, describing what constructors
and types are available, and it will do the rest. By enumerating
every possible well-typed expression up to a maximum size and
comparing them observationally to one another, QuickSpec will
find every law that holds for our implementation. We can then

This section is available only in the full book..

9.2. STRUCTURES 317

reassoc :: (a, (b, c)) -> ((a, b), c)
reassoc (x, (y, z)) = ((x, y), z)

Fundamentally, these laws govern what “combining two containers”
means. Consider the two following applicative functors over lists:

unit :: [()]
unit = [()]

zap :: [a] -> [b] -> [(a, b)]
zap = cartesianProduct

and

unit :: [()]
unit = repeat () ⋅ 1

zap :: [a] -> [b] -> [(a, b)]
zap = zip ⋅ 2

where the repeat function at 1 creates an infinitely long list, and
zip at 2 combines two lists element-wise, truncating to whichever
list is shorter.

Exercise Show that both ([()], cartesianProduct) and (repeat
(), zip) form applicative functors over lists.

In Haskell, applicative functors are usually expressed in terms of
the equivalent operations pure and (<*>) — pronounced “ap” —
given by:

9.2. STRUCTURES 318

pure :: a -> T a
pure a = fmap (const a) unit

(<*>) :: T (a -> b) -> T a -> T b
tf <*> ta = fmap (uncurry ($)) zap tf ta

This (<*>) operation enables a particular Haskell idiom, which lifts
function application over “pure values” into function application
over applicative functors — thus the name. Examples of this are
scattered throughout chapter 4 and chapter 6, where we lift expres-
sions of the form:

step i (both c1 c2) = both <$> step i c1 <*> step i c2

Back Matter

319

Acknowledgements

Writing a book is a serious investment of time and energy, and this
one couldn’t have happened without the support of many, many
fantastic people. I want to thank everyone for their support, their
patronage, and their enthusiasm. Some of the exceptionally instru-
mental people, however, require further accolades. In particular:

Reed Mullanix, for tirelessly and enthusiastically helping me
work through the many, many mathematical difficulties I came
across while researching this book.

Barry Moore, for spending so many of his weekend hours beta-
testing every chapter and each of their revisions. I’m genuinely
sorry for just how many “part twos” I put you through.

Jonathan Lorimer, for his unending enthusiasm and our many
late-night strategy sessions trying to whip tricky chapters into
shape.

Louisa Edelmann, for playfully teasing that writing only a sin-
gle book doesn’t really warrant calling oneself a writer. Without
you, this project probably would have never happened.

Kenneth Bruskiewicz, for telling me what I needed to hear —
even though I didn’t want to listen.

Intellectually, this book stands on the shoulders of Conal Elliott
and John Hughes, whose ideas will forever continue to inspire me.

Thanks to Nick Smallbone for all of his hard work on QuickSpec,
and for being so patient with the deluge of issues and questions I
sent his way.

320

9.2. STRUCTURES 321

Furthermore, this book wouldn’t have been possible without
the generous financial support of Bob Ippolito, codygman, Adam
Conner-Sax, Gabriele Lana, Daniel Tebbutt, Jan Hrček, Vladimir
Ciobanu, Samuel Evans-Powell, Edmund Cape, Pavlos Pantatakis,
Fintan Halpenny, Jonathan Lorimer, Alexey Nesterov, Jakub
Zarybnicky, Imre Gulyas, Andor Penzes, Shane Sveller, Reynaldo
Cordero, Sam Raker, Andrei Orlov, Henry Laxen, Michael Alan
Dorman, David Burkett, Michael Hood, Barry Moore, Markus
Läll, Adnaan Mukadam, pluton, Daniel Gasienica, Andre Moelle,
Adam Flott, Martin Allard, Patrick Weemeeuw, Joel McCracken,
Ian, Chris Penner, Forest Walk, Dawid Furman, Angel Vanegas,
Christian Lavoie, Alexander Granin, Csongor Kiss, and Sergey
Kintsel.

Algebra-Driven Design uses icons made by Freepik, turkkub,
and Becris, from www.flaticon.com. Additionally, the maps in
chapter 4 are from Google. The cover uses elements from Greg
Egan’s Lissajous generator, from https://gregegan.net.

Thank you all most sincerely, from the very bottom of my heart.

Bibliography

10 Bjarnason, Runar. 2015. “Constraints Liberate, Liberties Con-
strain.” Scala World. https://www.youtube.com/watch?v=Gqms
QeSzMdw.

Böhm, Corrado, and Alessandro Berarducci. 1985. “Automatic
Synthesis of Typed λ-Programs on Term Algebras.” Theoretical
Computer Science 39: 135–54. https://doi.org/10.1016/0304-
3975(85)90135-5.

Claessen, Koen, and John Hughes. 2000. “QuickCheck: A
Lightweight Tool for Random Testing of Haskell Programs.” In Pro-
ceedings of the Fifth ACM SIGPLAN International Conference on
Functional Programming - ICFP ’00, 268–79. Not Known: ACM
Press. https://doi.org/10.1145/351240.351266.

———. 2002. “Testing Monadic Code with QuickCheck.”
ACM SIGPLAN Notices 37 (12): 47. https://doi.org/10.1145/63
6517.636527.

Dijkstra, Edsger W. 1972. “The Humble Programmer.” Com-
munications of the ACM 15 (10): 859–66. https://doi.org/10.114
5/355604.361591.

———. 1982. “Why Is Software so Expensive?” In Selected
Writings on Computing. Springer-Verlag. https://www.cs.utexas.
edu/users/EWD/transcriptions/EWD06xx/EWD648.html.

Elliott, Conal. 2009. “Denotational Design with Type Class
Morphisms (Extended Version).” 2009-01. LambdaPix. http://co
nal.net/papers/type-class-morphisms.

322

https://www.youtube.com/watch?v=GqmsQeSzMdw
https://www.youtube.com/watch?v=GqmsQeSzMdw
https://doi.org/10.1016/0304-3975(85)90135-5
https://doi.org/10.1016/0304-3975(85)90135-5
https://doi.org/10.1145/351240.351266
https://doi.org/10.1145/636517.636527
https://doi.org/10.1145/636517.636527
https://doi.org/10.1145/355604.361591
https://doi.org/10.1145/355604.361591
https://www.cs.utexas.edu/users/EWD/transcriptions/EWD06xx/EWD648.html
https://www.cs.utexas.edu/users/EWD/transcriptions/EWD06xx/EWD648.html
http://conal.net/papers/type-class-morphisms
http://conal.net/papers/type-class-morphisms

	Dedication
	Foreword
	Preface
	Overview
	Abstraction
	What is Algebra-Driven Design?
	Conventions
	Why Haskell?
	Reading Haskell
	Understanding Haskell Types
	Equational Laws

	A Note on the Companion Library

	I Designing Algebras
	Tiles
	Basic Building Blocks
	Subdividing Space
	Observations
	Generalization

	What Makes a Good Algebra?
	Scavenger Hunt
	Input Filters
	Simultaneous Challenges
	Challenge Completion
	Simplification
	A Unified Observation
	Symmetry
	Clues
	Generalization

	II Deriving Implementations
	Tile Implementation
	The Initial Encoding
	Generating Tests
	An Efficient Implementation

	Scavenger Hunt Implementation
	The Filter Algebra
	The Challenge Algebra
	Testing It
	Implementation

	III Reference Material
	Property-Based Testing
	Basics
	Writing Good Generators
	Showing
	Shrinking
	Using QuickCheck Interactively

	Effective QuickSpec
	Signatures
	Motivating QuickSpec
	QuickSpec for Designing Greenfield Projects
	QuickSpec for Analyzing Existing Projects

	Background Signatures
	Predicates
	Naming Variables
	Observing Equalities
	Creating QuickCheck Tests
	Variable Usage
	Debugging QuickSpec Output
	Common Warnings
	Insane Laws
	Poorly-Typed Laws
	Unsimplified Laws

	Common Algebraic Components
	Properties
	Associativity
	Identity
	Idempotency
	Invertibility
	Distributivity
	Commutativity
	Annihilation

	Structures
	Semigroups
	Monoids
	Groups
	Semilattices
	Functors
	Applicative Functors

	Back Matter
	Acknowledgements
	Bibliography
	Glossary

